Do you want to publish a course? Click here

Wedge - Shaped Absorbing Samples Look Left Handed: The Problem of Interpreting Negative Refraction, and its Solution

65   0   0.0 ( 0 )
 Added by Mikel Sanz
 Publication date 2002
  fields Physics
and research's language is English
 Authors M. Sanz




Ask ChatGPT about the research

We report experiments of light transmissivity at wavelengths: 532 and 400 nm, through an Au film with a wedge shape. Our results mimic the negative refraction reported by others for so-called left handed materials. A mimic of negative refraction is observed, even though this medium is well known to be right handed, and thus its refractive index has a positive real part. Analogous results are obtained with a glass wedge at 320nm where absorption dominates. The experiment is explained by the wave losses that dominate over propagation, like in the observation of negative refraction, already reported in developed metamaterial wedges. We design and propose an experiment with metamaterials by using thicker wires, in correspondence with light experiments that should conclusively determine whether refraction is positive or negative.



rate research

Read More

158 - Z. G. Dong , S. N. Zhu , H. Liu 2005
A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snells law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snells law experiments.
60 - Z. G. Dong , S. Y. Lei , Q. Li 2007
A [pi]-shaped metallic metamaterial (geometrically, a combination medium of C-shaped resonators and continuous wires) is proposed to numerically investigate its transmission band near the resonant frequency, where otherwise it should be a negative-permeability (or negative-permittivity) stop band if either the C-shaped or continuous-wire constituent is separately considered. However, in contrast to the left-handed materials (LHMs)composed of split-ring resonators and wires as well as other metallic LHMs, this resonant transmission is a non-left-handed one as a result of the intrinsic bianisotropic effect attributed to the electrically asymmetric configuration of this [pi]-shaped metamaterial.
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are also needed to do $U(1)_L$ anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.
Using detailed simulations we investigate the magnetic response of metamaterials consisting of pairs of parallel slabs or combinations of slabs with wires (including the fishnet design) as the length-scale of the structures is reduced from mm to nm. We observe the expected saturation of the magnetic resonance frequency when the structure length-scale goes to the sub-micron regime, as well as weakening of the effective permeability resonance and reduction of the spectral width of the negative permeability region. All these results are explained by using an equivalent resistor-inductor-capacitor (RLC) circuit model, taking into account the current-connected kinetic energy of the electrons inside the metallic parts through an equivalent inductance, added to the magnetic field inductance in the unit-cell. Using this model we derive simple optimization rules for achieving optical negative permeability metamaterials of improved performance. Finally, we analyze the magnetic response of the fishnet design and we explain its superior performance regarding the high attainable magnetic resonance frequency, as well as its inferior performance regarding the width of the negative permeability region.
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا