We report on a construction for smectic blue phases, which have quasi-long range smectic translational order as well as long range cubic or hexagonal order. Our proposed structures fill space with a combination of minimal surface patches and cylindrical tubes. We find that for the right range of material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform layered structures.
While twist-bend nematic phases have been extensively studied, the experimental observation of two dimensional, oscillating splay-bend phases is recent. We consider two theoretical models that have been used to explain the formation of twist-bend phases -- flexoelectricity and bond orientational order -- as mechanisms to induce splay-bend phases. Flexoelectricity is a viable mechanism, and splay and bend flexoelectric couplings can lead to splay-bend phases with different modulations. We show that while bond orientational order circumvents the need for higher order terms in the free energy, the important role of nematic symmetry and phase chirality rules it out as a basic mechanism.
We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between interfacial and elastic forces. When $chi$ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger $chi$, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase/simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.
Using a generalized Landau theory involving orientational, layering, tilt, and biaxial order parameters we analyze the smectic-A* and smectic-C* (Sm-A* -- Sm-C*) transition, showing that a combination of small orientational order and large layering order leads to Sm-A* -- Sm-C* transitions that are either continuous and close to tricriticality or first order. The model predicts that in such systems the increase in birefringence upon entry to the Sm-C* phase will be especially rapid. It also predicts that the change in layer spacing at the Sm-A* -- Sm-C* transition will be proportional to the orientational order. These are two hallmarks of Sm-A* -- Sm-C* transitions in de Vries materials. We analyze the electroclinic effect in the Sm-A* phase and show that as a result of the zero-field Sm-A* -- Sm-C* transition being either continuous and close to tricriticality or first order (i.e for systems with a combination of weak orientational order and strong layering order) the electroclinic response of the tilt will be unusually strong. Additionally, we investigate the associated electrically induced change in birefringence and layer spacing, demonstrating de Vries behavior for each, i.e. an unusually large increase in birefringence and an unusually small layer contraction. Both the induced change in birefringence and layer spacing are shown to scale quadratically with the induced tilt angle.
The Hopf fibration has inspired any number of geometric structures in physical systems, in particular in chiral liquid crystalline materials. Because the Hopf fibration lives on the three sphere, $mathbb{S}^3$, some method of projection or distortion must be employed to realize textures in flat space. Here, we explore the geodesic-preserving gnomonic projection of the Hopf fibration, and show that this could be the basis for a new liquid crystalline texture with only splay and twist. We outline the structure and show that it is defined by the tangent vectors along the straight line rulings on a series of hyperboloids. The phase is defined by a lack of bend deformations in the texture, and is reminiscent of the splay-bend and twist-bend nematic phases. We show that domains of this phase may be stabilized through anchoring and saddle-splay.
We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric bimesogenic and bent-core materials, and predicts how this range may be increased further.