No Arabic abstract
The Hopf fibration has inspired any number of geometric structures in physical systems, in particular in chiral liquid crystalline materials. Because the Hopf fibration lives on the three sphere, $mathbb{S}^3$, some method of projection or distortion must be employed to realize textures in flat space. Here, we explore the geodesic-preserving gnomonic projection of the Hopf fibration, and show that this could be the basis for a new liquid crystalline texture with only splay and twist. We outline the structure and show that it is defined by the tangent vectors along the straight line rulings on a series of hyperboloids. The phase is defined by a lack of bend deformations in the texture, and is reminiscent of the splay-bend and twist-bend nematic phases. We show that domains of this phase may be stabilized through anchoring and saddle-splay.
While twist-bend nematic phases have been extensively studied, the experimental observation of two dimensional, oscillating splay-bend phases is recent. We consider two theoretical models that have been used to explain the formation of twist-bend phases -- flexoelectricity and bond orientational order -- as mechanisms to induce splay-bend phases. Flexoelectricity is a viable mechanism, and splay and bend flexoelectric couplings can lead to splay-bend phases with different modulations. We show that while bond orientational order circumvents the need for higher order terms in the free energy, the important role of nematic symmetry and phase chirality rules it out as a basic mechanism.
Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.
We report a dynamic light scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic ($mathrm{N_{TB}}$) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic and one hydrodynamic mode in the $mathrm{N_{TB}}$ phase, and a single nonhydrodynamic plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-deGennes expansion of the free energy density in terms of heliconical director and helical polarization fields that characterize the $mathrm{N_{TB}}$ structure, with the latter serving as the primary order parameter. A coarse-graining approximation simplifies the theoretical analysis, and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in region-II, the stress shows a plateau, characterised by a power law $sigmasim{dot{gamma}}^{alpha}$, where $alphasim0.1-0.4$ and in region-III, $sigmasimdot{gamma}$. With increasing shear rate, $sigma$ changes continuously from region-I to II, whereas it changes discontinuously with a hysteresis from region-II to III. In the plateau (region-II), we observe a dynamic stress fluctuations, exhibiting regular, periodic and quasiperiodic oscillations under the application of steady shear. The observed spatiotemporal dynamics in our experiments are close to those were predicted theoretically in sheared nematogenic fluids.
Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable worm-like chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40 $pm$ 10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago (Marko and Siggia, Macromolecules 27, 981 (1994)), its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.