Do you want to publish a course? Click here

Phonon structure in I-V characteristic of MgB$_{2}$ point-contacts

180   0   0.0 ( 0 )
 Added by Igor Yanson
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The search of the phonon structure at the above-gap energies was carried out for $d^{2}V/dI^{2}(V)$ spectra of MgB$_{2}$ point contacts with a normal metal. The two-band model is assumed not only for the gap structure in $dV/dI(V)$-characteristics, but also for phonons in $d^{2}V/dI^{2}(V)$ point-contact spectra, with up to the maximum lattice vibration energy. Since the current is carried mostly by charges of 3D-band, whereas the strong electron-phonon interaction occurs in 2D-band, we observe the phonon peculiarities due to proximity effect in {it k}-space, which depends on the variation of interband coupling through the elastic scattering.



rate research

Read More

200 - I. K. Yanson 2004
In strong-coupling superconductors with a short electron mean free path the self-energy effects in the superconducting order parameter play a major role in the phonon manifestation of the point-contact spectra at above-gap energies. We compare the expressions for the nonlinear conductivity of tunnel, ballistic, and diffusive point-contacts and show that these expression are similar and correspond to the measurements of the phonon structure in the point-contact spectra for the $pi$-band of MgB$_{2}$.
77 - N. L. Bobrov 2021
The recovering procedure of the electron-phonon interaction (EPI) functions from the additional nonlinearities of the current-voltage curve ($I-V$ curve) of point contacts associated with an excess current is considered. The approach proposed takes into account both inelastic scattering, which causes suppression of the excess current in the reabsorption of nonequilibrium phonons by electrons undergoing Andreev reflection (Andreev electrons), and elastic processes associated with the electron-phonon renormalization of the energy spectrum in a superconductor. The results obtained are systematically expounded for both the ballistic contacts, wherein the second derivatives of the $I-V$ curve in the normal state are proportional to the EPI functions, and inhomogeneous contacts (with dirty constrictions and clean banks), whose second derivatives in the normal state are either free of phonon singularities or weakly pronounced.
The Raman spectrum of the superconductor MgB$_{2}$ has been measured as a function of the Tc of the film. A striking correlation is observed between the $T_{c}$ onset and the frequency of the $E_{2g}$ mode. Analysis of the data with the McMillan formula provides clear experimental evidence for the collapse of the electron phonon coupling at the temperature predicted for the convergence of two superconducting gaps into one observable gap. This gives indirect evidence of the convergence of the two gaps and direct evidence of a transition to an isotropic state at 19 K. The value of the electron phonon coupling constant is found to be 1.22 for films with T$_{c}$ 39K and 0.80 for films with T$_{c}leq$19K.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial superconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
We carried out Raman measurements on neutron-irradiated and Al-doped MgB$_2$ samples. The irradiation-induced topological disorder causes an unexpected appearance of high frequency spectral structures, similar to those observed in lightly Al-doped samples. Our results show that disorder-induced violations of the selection rules are responsible for the modification of the Raman spectrum in both irradiated and Al-doped samples. Theoretical calculations of the phonon density of states support this hypothesis, and demonstrate that the high frequency structures arise mostly from contributions at ${bf q} ot=0$ of the E$_{2g}$ phonon mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا