Do you want to publish a course? Click here

Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis

100   0   0.0 ( 0 )
 Added by T. A. Arias
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first wavelet-based all-electron density-functional calculations to include gradient corrections and the first in a solid. Direct comparison shows this approach to be unique in providing systematic ``transparent convergence, convergence with a priori prediction of errors, to beyond chemical (millihartree) accuracy. The method is ideal for exploration of materials under novel conditions where there is little experience with how traditional methods perform and for the development and use of chemically accurate density functionals, which demand reliable access to such precision.



rate research

Read More

We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is based on the inclusion of a q point grid which is denser in a restricted area around the center of the Brillouin Zone than in the remaining parts, even though the method is not limited to an area around Gamma. We have tested the validity of our procedure in the case of high-pressure phases of bulk silicon considering the bct and sh structure.
We describe a simple method to determine, from ab initio calculations, the complete orientation-dependence of interfacial free energies in solid-state crystalline systems. We illustrate the method with an application to precipitates in the Al-Ti alloy system. The method combines the cluster expansion formalism in its most general form (to model the systems energetics) with the inversion of the well-known Wulff construction (to recover interfacial energies from equilibrium precipitate shapes). Although the inverse Wulff construction only provides the relative magnitude of the various interfacial free energies, absolute free energies can be recovered from a calculation of a single, conveniently chosen, planar interface. The method is able to account for essentially all sources of entropy (arising from phonons, bulk point defects, as well as interface roughness) and is thus able to transparently handle both atomically smooth and rough interfaces. The approach expresses the resulting orientation-dependence of the interfacial properties using symmetry-adapted bases for general orientation-dependent quantities. As a by-product, this paper thus provides a simple and general method to generate such basis functions, which prove useful in a variety of other applications, for instance to represent the anisotropy of the so-called constituent strain elastic energy.
A modified core-to-valence band maximum approach is applied to calculate band offsets of strained III/V semiconductor hetero junctions. The method is used for the analysis of (In,Ga)As/GaAs/Ga(As,Sb) multi-quantum well structures. The obtained offsets and the resulting bandstructure are used as input for the microscopic calculation of photoluminescence spectra yielding very good agreement with recent experimental results.
Several research groups have recently reported {em ab initio} calculations of the melting properties of metals based on density functional theory, but there have been unexpectedly large disagreements between results obtained by different approaches. We analyze the relations between the two main approaches, based on calculation of the free energies of solid and liquid and on direct simulation of the two coexisting phases. Although both approaches rely on the use of classical reference systems consisting of parameterized empirical interaction models, we point out that in the free energy approach the final results are independent of the reference system, whereas in the current form of the coexistence approach they depend on it. We present a scheme for correcting the predictions of the coexistence approach for differences between the reference and {em ab initio} systems. To illustrate the practical operation of the scheme, we present calculations of the high-pressure melting properties of iron using the corrected coexistence approach, which agree closely with earlier results from the free energy approach. A quantitative assessment is also given of finite-size errors, which we show can be reduced to a negligible size.
202 - G.Y. Guo , Yugui Yao , 2005
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs and AlAs is large $[sim 100 (hbar/e)(Omega cm)^{-1}]$, showing the possibility of spin Hall effect beyond the four band Luttinger Hamiltonian. The calculated orbital-angular-momentum (orbital) Hall conductivity is one order of magnitude smaller, indicating no cancellation between the spin and orbital Hall effects in bulk semiconductors. Furthermore, it is found that the spin Hall effect can be strongly manipulated by strains, and that the $ac$ spin Hall conductivity in the semiconductors is large in pure as well as doped semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا