No Arabic abstract
The dynamic critical behavior of isotropic Heisenberg ferromagnets with a planar free surface is investigated by means of field-theoretic renormalization group techniques and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed. The relevant boundary terms of the action of the associated dynamic field theory are identified, the implied boundary conditions are derived, and the renormalization of the model in $d<6$ bulk dimensions is clarified. Two distinct renormalization schemes are utilized. The first is a massless one based on minimal subtraction of dimensional poles and the dimensionality expansion about $d=6$. To overcome its problems in going below $d=4$ dimensions, a massive one for fixed dimensions $dle 4$ is constructed. The resulting renormalization group (or Callan Symanzik) equations are exploited to obtain the scaling forms of surface quantities like the dynamic structure factor. In conjunction with boundary operator expansions scaling relations follow that relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar emph{static} bulk and surface exponents. To test the predicted scaling forms and scaling-law expressions for the critical exponents involved, accurate computer-simulation data are presented for the dynamic surface structure factor. These are in conformity with our predictions.
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle {theta}. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady state currents scale as 1/N^2 for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2{theta}/N.
The critical behaviour of semi-infinite $d$-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an $m$-axial Lifshitz point with an isotropic wave-vector instability in an $m$-dimensional subspace of $mathbb{R}^d$ parallel to the surface. Continuum $|bphi|^4$ models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant $lambda$) must be included in addition to the familiar ones $proptophi^2$. Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in $d=4+frac{m}{2}-epsilon$ dimensions (with $epsilon>0$) are located at $lambda=lambda^*=Or(epsilon)$. At second order in $epsilon$, the surface critical exponents of both the ordinary and the special transitions start to deviate from their $m=0$ analogues. Results to order $epsilon^2$ are presented for the surface critical exponent $beta_1^{rm ord}$ of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by $d+m (theta-1)$, where $theta= u_{l4}/ u_{l2}$ is the bulk anisotropy exponent.
The critical behavior of d-dimensional systems with an n-component order parameter is reconsidered at (m,d,n)-Lifshitz points, where a wave-vector instability occurs in an m-dimensional subspace of ${mathbb R}^d$. Our aim is to sort out which ones of the previously published partly contradictory $epsilon$-expansion results to second order in $epsilon=4+frac{m}{2}-d$ are correct. To this end, a field-theory calculation is performed directly in the position space of $d=4+frac{m}{2}-epsilon$ dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles. The residua of the dimensionally regularized integrals that are required to determine the series expansions of the correlation exponents $eta_{l2}$ and $eta_{l4}$ and of the wave-vector exponent $beta_q$ to order $epsilon^2$ are reduced to single integrals, which for general m=1,...,d-1 can be computed numerically, and for special values of m, analytically. Our results are at variance with the original predictions for general m. For m=2 and m=6, we confirm the results of Sak and Grest [Phys. Rev. B {bf 17}, 3602 (1978)] and Mergulh{~a}o and Carneiros recent field-theory analysis [Phys. Rev. B {bf 59},13954 (1999)].
The massive field-theory approach for studying critical behavior in fixed space dimensions $d<4$ is extended to systems with surfaces.This enables one to study surface critical behavior directly in dimensions $d<4$ without having to resort to the $epsilon$ expansion. The approach is elaborated for the representative case of the semi-infinite $|bbox{phi}|^4$ $n$-vector model with a boundary term ${1/2} c_0int_{partial V}bbox{phi}^2$ in the action. To make the theory uv finite in bulk dimensions $3le d<4$, a renormalization of the surface enhancement $c_0$ is required in addition to the standard mass renormalization. Adequate normalization conditions for the renormalized theory are given. This theory involves two mass parameter: the usual bulk `mass (inverse correlation length) $m$, and the renormalized surface enhancement $c$. Thus the surface renormalization factors depend on the renormalized coupling constant $u$ and the ratio $c/m$. The special and ordinary surface transitions correspond to the limits $mto 0$ with $c/mto 0$ and $c/mtoinfty$, respectively. It is shown that the surface-enhancement renormalization turns into an additive renormalization in the limit $c/mtoinfty$. The renormalization factors and exponent functions with $c/m=0$ and $c/m=infty$ that are needed to determine the surface critical exponents of the special and ordinary transitions are calculated to two-loop order. The associated series expansions are analyzed by Pade-Borel summation techniques. The resulting numerical estimates for the surface critical exponents are in good agreement with recent Monte Carlo simulations. This also holds for the surface crossover exponent $Phi$.
We study the universal far from equilibrium dynamics of magnons in Heisenberg ferromagnets. We show that such systems exhibit universal scaling in momentum and time of the quasiparticle distribution function, with the universal exponents distinct from those recently observed in Bose-Einstein condensates. This new universality class originates from the SU(2) symmetry of the Hamiltonian, which leads to a strong momentum-dependent magnon-magnon scattering amplitude. We compute the universal exponents using the Boltzmann kinetic equation and incoherent initial conditions that can be realized with microwave pumping of magnons. We compare our numerical results with analytic estimates of the scaling exponents and demonstrate the robustness of the scaling to variations in the initial conditions. Our predictions can be tested in quench experiments of spin systems in optical lattices and pump-probe experiments in ferromagnetic insulators such as yttrium iron garnet.