Do you want to publish a course? Click here

Massive Field-Theory Approach to Surface Critical Behavior in Three-Dimensional Systems

255   0   0.0 ( 0 )
 Added by H. W. Diehl
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

The massive field-theory approach for studying critical behavior in fixed space dimensions $d<4$ is extended to systems with surfaces.This enables one to study surface critical behavior directly in dimensions $d<4$ without having to resort to the $epsilon$ expansion. The approach is elaborated for the representative case of the semi-infinite $|bbox{phi}|^4$ $n$-vector model with a boundary term ${1/2} c_0int_{partial V}bbox{phi}^2$ in the action. To make the theory uv finite in bulk dimensions $3le d<4$, a renormalization of the surface enhancement $c_0$ is required in addition to the standard mass renormalization. Adequate normalization conditions for the renormalized theory are given. This theory involves two mass parameter: the usual bulk `mass (inverse correlation length) $m$, and the renormalized surface enhancement $c$. Thus the surface renormalization factors depend on the renormalized coupling constant $u$ and the ratio $c/m$. The special and ordinary surface transitions correspond to the limits $mto 0$ with $c/mto 0$ and $c/mtoinfty$, respectively. It is shown that the surface-enhancement renormalization turns into an additive renormalization in the limit $c/mtoinfty$. The renormalization factors and exponent functions with $c/m=0$ and $c/m=infty$ that are needed to determine the surface critical exponents of the special and ordinary transitions are calculated to two-loop order. The associated series expansions are analyzed by Pade-Borel summation techniques. The resulting numerical estimates for the surface critical exponents are in good agreement with recent Monte Carlo simulations. This also holds for the surface crossover exponent $Phi$.



rate research

Read More

102 - H. W. Diehl , M. Shpot 2000
The critical behavior of d-dimensional systems with an n-component order parameter is reconsidered at (m,d,n)-Lifshitz points, where a wave-vector instability occurs in an m-dimensional subspace of ${mathbb R}^d$. Our aim is to sort out which ones of the previously published partly contradictory $epsilon$-expansion results to second order in $epsilon=4+frac{m}{2}-d$ are correct. To this end, a field-theory calculation is performed directly in the position space of $d=4+frac{m}{2}-epsilon$ dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles. The residua of the dimensionally regularized integrals that are required to determine the series expansions of the correlation exponents $eta_{l2}$ and $eta_{l4}$ and of the wave-vector exponent $beta_q$ to order $epsilon^2$ are reduced to single integrals, which for general m=1,...,d-1 can be computed numerically, and for special values of m, analytically. Our results are at variance with the original predictions for general m. For m=2 and m=6, we confirm the results of Sak and Grest [Phys. Rev. B {bf 17}, 3602 (1978)] and Mergulh{~a}o and Carneiros recent field-theory analysis [Phys. Rev. B {bf 59},13954 (1999)].
323 - H. W. Diehl , M. Shpot 1994
The critical behavior of semi-infinite systems in fixed dimensions $d<4$ is investigated theoretically. The appropriate extension of Parisis massive field theory approach is presented.Two-loop calculations and subsequent Pade-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent $Phi (d=3)$, for which we obtain the values $Phi (n=1)simeq 0.54$ and $Phi (n=0)simeq 0.52$, considerably lower than the previous $epsilon$-expansion estimates.
71 - L. Turban 1993
We consider semi-infinite two-dimensional layered Ising models in the extreme anisotropic limit with an aperiodic modulation of the couplings. Using substitution rules to generate the aperiodic sequences, we derive functional equations for the surface magnetization. These equations are solved by iteration and the surface magnetic exponent can be determined exactly. The method is applied to three specific aperiodic sequences, which represent different types of perturbation, according to a relevance-irrelevance criterion. On the Thue-Morse lattice, for which the modulation is an irrelevant perturbation, the surface magnetization vanishes with a square root singularity, like in the homogeneous lattice. For the period-doubling sequence, the perturbation is marginal and the surface magnetic exponent varies continuously with the modulation amplitude. Finally, the Rudin-Shapiro sequence, which corresponds to the relevant case, displays an anomalous surface critical behavior which is analyzed via scaling considerations: Depending on the value of the modulation, the surface magnetization either vanishes with an essential singularity or remains finite at the bulk critical point, i.e., the surface phase transition is of first order.
302 - A. Malakis , N.G. Fytas 2008
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete $(pmDelta)$ distribution, and we study the model for various values of the disorder strength $Delta$, $Delta=0.5, 1, 1.5$ and 2, on cubic lattices with linear sizes $L=4-24$. We extract information for the probability distributions of the specific heat peaks over samples of random fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the model. This property appears to be substantially depended on the disorder strength.
Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurate description of the crossover function for the susceptibility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا