Do you want to publish a course? Click here

Calibration of the length of a chain of single gold atoms

52   0   0.0 ( 0 )
 Added by Carlos Untiedt
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.

rate research

Read More

The continuing miniaturization of microelectronics raises the prospect of nanometre-scale devices with mechanical and electrical properties that are qualitatively different from those at larger dimensions. The investigation of these properties, and particularly the increasing influence of quantum effects on electron transport, has therefore attracted much interest. Quantum properties of the conductance can be observed when `breaking a metallic contact: as two metal electrodes in contact with each other are slowly retracted, the contact area undergoes structural rearrangements until it consists in its final stages of only a few bridging atoms. Just before the abrubt transition to tunneling occurs, the electrical conductance through a monovalent metal contact is always close to a value of 2e^2/h, where e is the charge on an electron and h is Placks constant. This value corresponds to one quantum unit of conductance, thus indicating that the `neck of the contact consists of a single atom. In contrast to previous observations of only single-atom necks, here we describe the breaking of atomic-scale gold contacts, which leads to the formation of gold chains one atom thick and at least four atoms long. Once we start to pull out a chain, the conductance never exceeds 2e^2/h, confirming that it acts as a one-dimensional quantized nanowire. Given their high stability and the ability to support ballistic electron transport, these structures seem well suited for the investigation of atomic-scale electronics.
Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics.
250 - L. Saviot 2018
The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.
In the present work we theoretically study the length dependence of thermopower of a single-molecule junction with a chain-like molecular bridge of an arbitrary length using a tight-binding model. We analyze conditions bringing a nonlinear growth of the thermopower accompanying the extension of the bridge length. Also, we show that the thermopower may decrease with increasing molecular length provided that the molecular bridge is sufficiently long.
A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا