Do you want to publish a course? Click here

Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La$_{2}$CuO$_{4.11}$ and La$_{1.88}$Sr$_{0.12}$CuO$_{4}$

67   0   0.0 ( 0 )
 Added by Yasutomo J. Uemura
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.

rate research

Read More

We report the observation of a bulk charge modulation in La$_{1.88}$Sr$_{0.12}$CuO$_4$ (LSCO) with a characteristic in-plane wave-vector of (0.236, $pm delta$), with $delta$=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal 214 cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.
The superconducting properties of high-tc materials are functions of carriers concentration, which is controlled by the concentration of defects including heterovalent cations, interstitial oxygen ions, and oxygen vacancies. Here we combine low-temperature thermal treatment of La$_{2-x}$Sr$_{x}$CuO$_{4}$ epitaxial thin films and confocal Raman spectroscopy to control and investigate oxygen vacancies. We demonstrate that the apical site is the most favorable position to accommodate oxygen vacancies under low-temperature annealing conditions. Additionally we show that in high-quality films of overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$, oxygen vacancies strongly deform the oxygen environment around the copper ions. This observation is consistent with previous defect-chemical studies, and calls for further investigation of the defect induced properties in the overdoped regime of the hole-doped lanthanum cuprates.
High-$T_{rm{c}}$ cuprate superconductors host spin, charge and lattice instabilities. In particular, in the antiferromagnetic glass phase, over a large doping range, lanthanum based cuprates display a glass-like spin freezing with antiferromagnetic correlations. Previously, sound velocity anomalies in La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) for hole doping $pgeq 0.145$ were reported and interpreted as arising from a coupling of the lattice to the magnetic glass [Frachet, Vinograd et al., Nat. Phys. 16, 1064-1068 (2020)]. Here we report both sound velocity and attenuation in LSCO $p=0.12$, i.e. at a doping level for which the spin freezing temperature is the highest. Using high magnetic fields and comparing with nuclear magnetic resonance (NMR) measurements, we confirm that the anomalies in the low temperature ultrasound properties of LSCO are produced by a coupling between the lattice and the spin glass. Moreover, we show that both sound velocity and attenuation can be simultaneously accounted for by a simple phenomenological model originally developed for canonical spin glasses. Our results point towards a strong competition between superconductivity and spin freezing, tuned by the magnetic field. A comparison of different acoustic modes suggests that the slow spin fluctuations have a nematic character.
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results support the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano lineshape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high Tc superconductors.
122 - P. G. Baity , T. Sasagawa , 2016
The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_{4}$ by measuring nonequilibrium charge transport, or resistance $R$ as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in $R$, are revealed only when the critical region is approached from the charge-ordered phase. Our results on La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_{4}$ provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا