No Arabic abstract
We report the observation of a bulk charge modulation in La$_{1.88}$Sr$_{0.12}$CuO$_4$ (LSCO) with a characteristic in-plane wave-vector of (0.236, $pm delta$), with $delta$=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal 214 cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.
High-$T_{rm{c}}$ cuprate superconductors host spin, charge and lattice instabilities. In particular, in the antiferromagnetic glass phase, over a large doping range, lanthanum based cuprates display a glass-like spin freezing with antiferromagnetic correlations. Previously, sound velocity anomalies in La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) for hole doping $pgeq 0.145$ were reported and interpreted as arising from a coupling of the lattice to the magnetic glass [Frachet, Vinograd et al., Nat. Phys. 16, 1064-1068 (2020)]. Here we report both sound velocity and attenuation in LSCO $p=0.12$, i.e. at a doping level for which the spin freezing temperature is the highest. Using high magnetic fields and comparing with nuclear magnetic resonance (NMR) measurements, we confirm that the anomalies in the low temperature ultrasound properties of LSCO are produced by a coupling between the lattice and the spin glass. Moreover, we show that both sound velocity and attenuation can be simultaneously accounted for by a simple phenomenological model originally developed for canonical spin glasses. Our results point towards a strong competition between superconductivity and spin freezing, tuned by the magnetic field. A comparison of different acoustic modes suggests that the slow spin fluctuations have a nematic character.
This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.
We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La$_{1.875}$Ba$_{0.125}$CuO$_4$ than in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La$_{1.875}$Ba$_{0.125}$CuO$_4$, $xi^{hole}=255pm 5$ AA whereas for La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$F, $xi^{hole}=111pm 7$ AA. We find that the modulations are temperature independent in La$_{1.875}$Ba$_{0.125}$CuO$_4$ in the low temperature tetragonal phase. In contrast, in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La$_{1.875}$Ba$_{0.125}$CuO$_4$ results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.
Using scanning tunneling spectroscopy we have investigated the spatial evolution of the anomalous c-axis zero bias conductance peak, discovered in a previous study by our group, in epitaxial La$_{1.88}$Sr$_{0.12}$CuO$_4$ thin films. We found an anisotropic spatial dependence of the corresponding low-energy density of states which complies with the predicted spectral features of an anti-phase ordering of the d-wave order parameter within the ab-plane. Such an ordering was recently suggested to account for the 1/8 anomaly in the high temperature superconductors and the dynamical layer decoupling recently reported to occur in the transport studies of La$_{15/8}$Ba$_{1/8}$CuO$_4$.
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as $T^{-2}$ towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La$_{1.875}$Ba$_{0.125}$CuO$_4$, La$_{1.475}$Nd$_{0.4}$Sr$_{0.125}$CuO$_4$ and La$_{1.875}$Sr$_{0.125}$CuO$_4$) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.