Do you want to publish a course? Click here

Evidence for two-dimensional nucleation of superconductivity in MgB$_{2}$

191   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

According to the crystal structure of MgB$_{2}$ and band structure calculations quasi-two-dimensional (2D) boron planes are responsible for the superconductivity. We report on critical fields and resistance measurements of 30 nm thick MgB$_{2}$ films grown on MgO single crystalline substrate. A linear temperature dependence of the parallel and perpendicular upper critical fields indicate a 3D-like penetration of magnetic field into the sample. Resistivity measurements, in contrast, yield a temperature dependence of fluctuation conductivity above T$_{c}$ which agrees with the Aslamazov-Larkin theory of fluctuations in 2D superconductors. We consider this finding as an experimental evidence of two-dimensional nucleation of superconductivity in MgB$_{2}$.



rate research

Read More

Hydrogen-based compounds under ultra-high pressure, such as the polyhydrides H$_3$S and LaH$_{10}$, superconduct through the conventional electron-phonon coupling mechanism to attain the record critical temperatures known to date. We demonstrate here that the intrinsic advantages of hydrogen for phonon-mediated superconductivity can be exploited in a completely different system, namely two-dimensional (2D) materials. We find that hydrogen adatoms can strongly enhance superconductivity in 2D materials due to flatband states originating from atomic-like hydrogen orbitals, with a resulting high density of states, and due to the emergence of high-frequency hydrogen-related phonon modes that boost the electron-phonon coupling. As a concrete example, we investigate the effect of hydrogen adatoms on the superconducting properties of monolayer MgB$_2$, by solving the fully anisotropic Eliashberg equations, in conjunction with a first-principles description of the electronic and vibrational states, and the coupling between them. We show that hydrogenation leads to a high critical temperature of 67 K, which can be boosted to over 100 K by biaxial tensile strain.
We report a comprehensive TF-muSR study of TiSe_2Cu_2. The magnetic penetration depth was found to saturate at low temperature as expected in an s-wave SC. As x is increased we find that the superfluid density increases and the size of the superconducting gap, calculated from the temperature dependence of the superfluid density, is approaching the BCS value. However, for low values of x, the gap is smaller than the weak-coupling BCS prediction suggesting that two superconducting gaps are present in the sample.
Point contact Andreev reflection spectra have been taken as a function of temperature and magnetic field on the polycrystalline form of the newly discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak which disappears at the superconducting transition temperature, dominates all of the spectra. Data taken in high magnetic fields show that this feature survives until 7T at 2K and a flattening of the feature is observed in some contacts. Here we inspect whether these observations can be interpreted within a d-wave, or nodal order parameter framework which would be consistent with the recent theoretical model where the height of the P in the Fe-P-Fe plane is key to the symmetry of the superconductivity. However, in polycrystalline samples care must be taken when examining Andreev spectra to eliminate or take into account artefacts associated with the possible effects of Josephson junctions and random alignment of grains.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial superconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
We carried out Raman measurements on neutron-irradiated and Al-doped MgB$_2$ samples. The irradiation-induced topological disorder causes an unexpected appearance of high frequency spectral structures, similar to those observed in lightly Al-doped samples. Our results show that disorder-induced violations of the selection rules are responsible for the modification of the Raman spectrum in both irradiated and Al-doped samples. Theoretical calculations of the phonon density of states support this hypothesis, and demonstrate that the high frequency structures arise mostly from contributions at ${bf q} ot=0$ of the E$_{2g}$ phonon mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا