Do you want to publish a course? Click here

Niobium and niobium nitride SQUIDs based on anodized nanobridges made with an Atomic Force Microscope

68   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a fabrication method of superconducting quantum interference devices (SQUIDs) based on direct write lithography with an Atomic Force Microscope (AFM). This technique involves maskless local anodization of Nb or NbN ultrathin films using the voltage biased tip of the AFM. The SQUIDs are of weak-link type, for which two geometries have been tested: Dayem and variable thickness nanobridges. The magnetic field dependence of the maximum supercurrent Ic(flux) in resulting SQUIDs is thoroughly measured for different weak link geometries and for both tested materials. It is found that the modulation shape and depth of Ic(flux) curves are greatly dependent on the weak link size. We analyze the results taking into account the kinetic inductance of nanobridges and using the Likharev-Yakobson model. Finally we show that the present resolution reached by this technique (20nm) enables us to fabricate Nb weak-links which behavior approaches those of ideal Josephson junctions.



rate research

Read More

We demonstrate and characterize first superconducting nanowire single-photon detectors (SNSPDs) made from atomic layer-deposited (ALD) NbN layers. To assess the suitability of these films as a detector material, transport properties of bare films and bridges of different dimensions and thicknesses are investigated. Similar ratios of the measured critical current to the depairing current are obtained for micro-bridges made from ALD and sputtered NbN films. Furthermore, we characterized the single-photon response for 5 and 10 nm-thick nanowire detectors. A 100 nm-wide straight nanowire with a length of 5 $mu$m exhibits saturated count-rate dependencies on bias current and a cut-off wavelength in the near-infrared range. The ALD technique could open up the possibility to fabricate NbN-based detectors on the wafer scale and to conformally cover also non-planar surfaces for novel device concepts.
We present a method for fabricating Josephson junctions and superconducting quantum interference devices (SQUIDs) which is based on the local anodization of niobium strip lines 3 to 6.5 nm-thick under the voltage-biased tip of an Atomic Force Microscope. Microbridge junctions and SQUID loops are obtained either by partial or total oxidation of the niobium layer. Two types of weak link geometries are fabricated : lateral constriction (Dayem bridges) and variable thickness bridges. SQUIDs based on both geometries show a modulation of the maximum Josephson current with a magnetic flux periodic with respect to the superconducting flux quantum h/2e. They persist up to 4K. The modulation shape and depth for SQUIDs based on variable thickness bridges indicate that the weak link size becomes comparable to the superconducting film coherence length which is of the order of 10nm.
The interaction between an electric field and the electric charges in a material is described by electrostatic screening, which in metallic systems is commonly thought to be confined within a distance of the order of the Thomas-Fermi length. The validity of this picture, which holds for surface charges up to $sim 10^{13},mathrm{cm^{-2}}$, has been recently questioned by several experimental results when dealing with larger surface charges, such as those routinely achieved via the ionic gating technique. Whether these results can be accounted for in a purely electrostatic picture is still debated. In this work, we tackle this issue by calculating the spatial dependence of the charge carrier density in thin slabs of niobium nitride via an ab initio density functional theory approach in the field-effect transistor configuration. We find that perturbations induced by surface charges $lesssim 10^{14},mathrm{cm^{-2}}$ are mainly screened within the first layer, while those induced by larger surface charges $sim 10^{15},mathrm{cm^{-2}}$ can penetrate over multiple atomic layers, in reasonable agreement with the available experimental data. Furthermore, we show that a significant contribution to the screening of large fields is associated not only to the accumulation layer of the induced charge carriers at the surface, but also to the polarization of the pre-existing charge density of the undoped system.
We use an atomic force microscope (AFM) to manipulate graphene films on a nanoscopic length scale. By means of local anodic oxidation with an AFM we are able to structure isolating trenches into single-layer and few-layer graphene flakes, opening the possibility of tabletop graphene based device fabrication. Trench sizes of less than 30 nm in width are attainable with this technique. Besides oxidation we also show the influence of mechanical peeling and scratching with an AFM of few layer graphene sheets placed on different substrates.
With a reduction in the average grain size in nanostructured films of elemental Nb, we observe a systematic crossover from metallic to weakly-insulating behavior. An analysis of the temperature dependence of the resistivity in the insulating phase clearly indicates the existence of two distinct activation energies corresponding to inter-granular and intra-granular mechanisms of transport. While the high temperature behavior is dominated by grain boundary scattering of the conduction electrons, the effect of discretization of energy levels due to quantum confinement shows up at low temperatures. We show that the energy barrier at the grain boundary is proportional to the width of the largely disordered inter-granular region, which increases with a decrease in the grain size. For a metal-insulator transition to occur in nano-Nb due to the opening up of an energy gap at the grain boundary, the critical grain size is ~ 8nm and the corresponding grain boundary width is ~ 1.1nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا