Do you want to publish a course? Click here

Dynamics of adsorbed islands with nanoscale resolution

106   0   0.0 ( 0 )
 Added by Jean Pierre Boon
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface catalytic processes produce, under certain conditions, small clusters of adsorbed atoms or groups, called {em islands} which, after they have been formed, move as individual entities. Here we consider the catalytic reduction of NO with hydrogen on platinum. (i) Using video field ion microscopy, we observe the dynamic motion of small hydroxyl islands on the Pt(001) plane; despite changes in their morphology, the islands dimensions are confined to values corresponding to 10 to 30 Pt atoms suggesting cooperative effects to be in operation. (ii) We construct an automaton (or lattice Monte-Carlo) model on the basis of a set of elementary processes governing the microscopic dynamics. The agreement between the simulation results and the experimental observations suggests a possible mechanism for the formation and dynamics of hydroxyl islands.

rate research

Read More

70 - C. Brechignac 2002
Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.
106 - F. Szalma , Hailu Gebremariam , 2003
We analyze in detail the fluctuations and correlations of the (spatial) Fourier modes of nano-scale single-layer islands on (111) fcc crystal surfaces. We analytically show that the Fourier modes of the fluctuations couple due to the anisotropy of the crystal, changing the power spectrum of the fluctuations, and that the actual eigenmodes of the fluctuations are the appropriate linear combinations of the Fourier modes. Using kinetic Monte Carlo simulations with bond-counting parameters that best match realistic energy barriers for hopping rates, we deduce absolute line tensions as a function of azimuthal orientation from the analyses of the fluctuation of each individual mode. The autocorrelation functions of these modes give the scaling of the correlation times with wavelength, providing us with the rate-limiting kinetics driving the fluctuations, here step-edge diffusion. The results for the energetic parameters are in reasonable agreement with available experimental data for Pb(111) surfaces, and we compare the correlation times of island-edge fluctuations to relaxation times of quenched Pb crystallites.
Triboelectric charging strongly affects the operation cycle and handling of materials and can be used to harvest mechanical energy through triboelectric nanogenerator set-up. Despite ubiquity of triboelectric effects, a lot of mechanisms surrounding the relevant phenomena remain to be understood. Continued progress will rely on the development of rapid and reliable methods to probe accumulation and dynamics of static charges. Here, we demonstrate in-situ quantification of tribological charging with nanoscale resolution, that is applicable to a wide range of dielectric systems. We apply this method to differentiate between strongly and weakly charging compositions of industrial grade polymers. The method highlights the complex phenomena of electrostatic discharge upon contact formation to pre-charged surfaces, and directly reveals the mobility of electrostatic charge on the surface. Systematic characterization of commercial polyethylene terephthalate samples revealed the compositions with the best antistatic properties and provided an estimate of characteristic charge density up to 5x10-5 C/m2. Large-scale molecular dynamics simulations were used to resolve atomistic level structural and dynamical details revealing enrichment of oxygen containing groups near the air-interface where electrostatic charges are likely to accumulate.
We report an artificial geometrically frustrated magnet based on an array of lithographically fabricated single-domain ferromagnetic islands. The islands are arranged such that the dipole interactions create a two-dimensional analogue to spin ice. Images of the magnetic moments of individual elements in this correlated system allow us to study the local accommodation of frustration. We see both ice-like short-range correlations and an absence of long-range correlations, behaviour which is strikingly similar to the lowtemperature state of spin ice. These results demonstrate that artificial frustrated magnets can provide an uncharted arena in which the physics of frustration can be directly visualized.
In the effort to make 2D materials-based devices smaller, faster, and more efficient, it is important to control charge carrier at lengths approaching the nanometer scale. Traditional gating techniques based on capacitive coupling through a gate dielectric cannot generate strong and uniform electric fields at this scale due to divergence of the fields in dielectrics. This field divergence limits the gating strength, boundary sharpness, and pitch size of periodic structures, and restricts possible geometries of local gates (due to wire packaging), precluding certain device concepts, such as plasmonics and transformation optics based on metamaterials. Here we present a new gating concept based on a dielectric-free self-aligned electrolyte technique that allows spatially modulating charges with nanometer resolution. We employ a combination of a solid-polymer electrolyte gate and an ion-impenetrable e-beam-defined resist mask to locally create excess charges on top of the gated surface. Electrostatic simulations indicate high carrier density variations of $Delta n =10^{14}text{cm}^{-2}$ across a length of 10 nm at the mask boundaries on the surface of a 2D conductor, resulting in a sharp depletion region and a strong in-plane electric field of $6times10^8 text{Vm}^{-1}$ across the so-created junction. We apply this technique to the 2D material graphene to demonstrate the creation of tunable p-n junctions for optoelectronic applications. We also demonstrate the spatial versatility and self-aligned properties of this technique by introducing a novel graphene thermopile photodetector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا