Do you want to publish a course? Click here

Unexpected Metallic-like Behavior of the Resistance in the Dielectric Spin Density Wave State in (TMTSF)2PF6

59   0   0.0 ( 0 )
 Added by Pudalov V. M.
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report unexpected features of the transport in the dielectric spin density wave (SDW) phase of the quasi one-dimensional compound (TMTSF)_2PF_6: the resistance exhibits a maximum and a subsequent strong drop as temperature decreases below approximately 2K. The maximum in R(T) is not caused by depinning or Joule heating of the SDW. The characteristic temperature of the R(T) maximum and the scaling behavior of the resistance at different magnetic fields B evidence that the non-monotonic R(T) dependence has an origin different from the one known for the quantum Hall effect region of the phase diagram. We also found that the borderline T_0(B,P) which divides the field induced SDW region of the P-B-T phase diagram into the hysteresis and non-hysteresis domains, terminates in the N=1 sub-phase; the borderline has thus no extension to the SDW N=0 phase.



rate research

Read More

The presence of subphases in spin-density wave (SDW) phase of (TMTSF)2PF6 below T* ~ 4K has been suggested by several experiments but the nature of the new phase is still controversial. We have investigated the temperature dependence of the angular dependence of the magnetoresistance in the SDW phase which shows different features for temperatures above and below T*. For T > 4K the magnetoresistance can be understood in terms of the Landau quantization of the quasiparticle spectrum in a magnetic field, where the imperfect nesting plays the crucial role. We propose that below T* ~ 4K the new unconventional SDW (USDW) appears modifying dramatically the quasiparticle spectrum. Unlike conventional SDW the order parameter of USDW depends on the quasiparticle momentum. The present model describes many features of the angular dependence of magnetoresistance reasonably well. Therefore, we may conclude that the subphase in (TMTSF)2PF6 below T* ~ 4K is described as SDW plus USDW.
It is well documented that SDW in (TMTSF)2PF6 undergoes another phase transition at T*approx 4K, though the nature of the new low temperature phase is controversial. We have shown recently that the new phase is well described in terms of unconventional SDW (USDW) which modifies the quasiparticle spectrum dramatically. In this paper we show that the same model describes consistently the Hall resistivity observed in (TMTSF)2PF6.
Materials that exhibit both strong spin orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff =1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk superconductivity currently remains elusive, anomalous quasi-particle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant x-ray scattering data reveal the presence of an incommensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.
157 - Ning Kang 2010
We report the first comprehensive investigation of the organic superconductor (TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal phase transition where phase coexistence occurs. At low temperature, the transition of metallic domains towards superconductivity is used to reveal the various textures. In particular, we demonstrate experimentally the existence of 1D and 2D metallic domains with a cross-over from a filamentary superconductivity mostly along the c?-axis to a 2D superconductivity in the b?c-plane perpendicular to the most conducting direction. The formation of these domain walls may be related to the proposal of a soliton phase in the vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.
88 - Nada Joo 2005
The study of the anion ordered (TMTSF)_2ClO_4_(1-x)ReO_4_x, solid solution in the limit of a low ReO_4- substitution level (0<=x<=17%) has revealed a new and interesting phase diagram. Superconductivity is drastically suppressed as the effect of ReO_4- non magnetic point defects increases following the digamma behaviour for usual superconductors in the presence of paramagnetic impurities. Then, no long range order can be stabilized above 0.1K in a narrow window of substitution. Finally, an insulating SDW ground state in ReO_4- -rich samples is rapidly stabilized with the decrease of the potential strength leading to the doubling of the transverse periodicity. This extensive study has shown that the superconducting order parameter must change its sign over the Fermi surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا