We present optical conductivity data for Lu(Ni$_{1-x}$Co$_x$)$_2$B$_2$C over a wide range of frequencies and temperatures for x=0 and x=0.09. Both materials show evidence of being good Drude metals with the infrared data in reasonable agreement with dc resistivity measurements at low frequencies. An absorption threshold is seen at approximately 700 cm-1. In the cobalt-doped material we see a superconducting gap in the conductivity spectrum with an absorption onset at 24 +/- 2 cm-1 = 3.9$ +/- 0.4 k_BT_c suggestive of weak to moderately strong coupling. The pure material is in the clean limit and no gap can be seen. We discuss the data in terms of the electron-phonon interaction and find that it can be fit below 600 cm-1 with a plasma frequency of 3.3 eV and an electron-phonon coupling constant lambda_{tr}=0.33 using an alpha^{2}F(omega) spectrum fit to the resistivity.
We investigated the far- and mid-infrared reflectivity (20-6000 wavenumber) of several pure and doped CuGeO3 single crystals. The b-axis and c-axis optical response is presented for different temperatures between 4 K and 300 K. Moreover, a full group theoretical analysis of the lattice vibrational modes of CuGeO3 in the high temperature undistorted phase as well as in the low temperature spin-Peierls phase is reported and compared to the experimental results. We observe the activation of zone boundary phonons along the b axis of the crystal below the spin-Peierls transition temperature.
We report anisotropic dc magnetic susceptibility $chi(T)$, electrical resistivity $rho(T)$, and heat capacity $C(T)$ measurements on the single crystals of CaFe$_{2-x}$Co$_x$As$_2$ for $x$ = 0 and 0.06. Large sized single crystals were grown by the high temperature solution method with Sn as the solvent. For the pure compound with $x$ = 0, a high temperature transition at 170 K is observed which is attributed to a combined spin density wave (SDW) ordering and a structural phase transition. On the other hand, for the Co-doped samples for $x$ = 0.06, the SDW transition is suppressed while superconductivity is observed at $simeq$17 K. The superconducting transition has been confirmed from the magnetization and electrical resistivity studies. The $^{57}$Fe Mossbauer spectrum in CaFe$_2$As$_2$ indicates that the SDW ordering is incommensurate. In the Co-doped sample, a prominent paramagnetic line at 4.2 K is observed indicating a weakening of the SDW state.
We investigated in detail the optical properties of several Cu(1-delta)Mg(delta)GeO3 (with delta=0,0.01), and CuGe(1-x)B(x)O3 with B=Si (x=0,0.007,0.05,0.1), and Al (x=0,0.01) single crystals, in the frequency range 20-32000 cm^-1. We report temperature dependent reflectivity and transmission measurements, performed with polarized light in order to probe the anisotropy of the crystals along the b and c axes, and optical conductivity spectra obtained by Kramers-Kronig transformation or direct inversion of the Fresnel formula. Special emphasis is given to the far-infrared phonon spectra. The temperature dependence of the phonon parameters is presented and discussed in relation to the soft mode issue in CuGeO3. For T<Tsp we could detect zone boundary folded modes activated by the spin-Peierls phase transition. Following the temperature dependence of these modes, which shows the second order character of the phase transition, we were able to study the effect of doping on Tsp. Moreover, in transmission experiments we detected a direct singlet-triplet excitation at 44 cm^-1, across the magnetic gap, which is not understandable on the basis of the magnetic excitation spectrum so far assumed for CuGeO3. The optical activity of this excitation and its polarization dependence confirm the existence of a second (optical) magnetic branch, recently suggested on the basis of inelastic neutron scattering data. The anisotropy in the magnetic exchange constants along the b axis, necessary for the optical triplet mode to gain a finite intensity, and the strong effect of Si substitution on the phonon spectra are discussed in relation to the alternative space group P2(1)2(1)2(1), recently proposed for CuGeO3 in the high temperature uniform phase.
A hydrostatic pressure study was made on pure and Rh-doped specimens of the superconducting ferromagnetic compounds Ru1-xRhxSr2GdCu2O8 (x = 0-0.15) by means of measurement of electrical resistivity vs temperature, in pressures up to 2 GPa. Partial substitution of Rh for Ru decreases the magnetization of the material, lowers both the magnetic ordering temperature Tm, and the superconducting transition temperature Tc, and promotes granularity. The effect of pressure for all compositions is an increase in both the intra- and intergranular superconductivity transition temperatures, Tc and Tp respectively, as well as Tm. The rate of change of each transition temperature with pressure first drops for Rh concentrations near 5%, increasing latter for higher concentrations. While the rate of increase of Tc with pressure for all compositions is 2-3 times lower than in YBCO materials, the simultaneous increase of Tc and Tm with pressure could support the notion of competition between superconductivity and ferromagnetism in these materials. The effect of pressure on the weak-links was a significant improvement of inter-granular connectivity.
We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. It was established that due to Ag addition the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp (with a transition width below 1 K), Tc and the upper critical field were found to increase, whereas the normal state resistivity significantly reduces becoming comparable with those of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by thermally activated flux flow. From the activation energy U vs H dependence, a crossover from single-vortex pinning to a collective creep pinning behavior was found with increasing the magnetic field.