Do you want to publish a course? Click here

Transport and pinning properties of Ag-doped FeSe0.94

232   0   0.0 ( 0 )
 Added by Elena Nazarova
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. It was established that due to Ag addition the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp (with a transition width below 1 K), Tc and the upper critical field were found to increase, whereas the normal state resistivity significantly reduces becoming comparable with those of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by thermally activated flux flow. From the activation energy U vs H dependence, a crossover from single-vortex pinning to a collective creep pinning behavior was found with increasing the magnetic field.



rate research

Read More

We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide range of fields, consistent with previous results from flux gradient-driven simulations. At fields above this range, the effectiveness of the pinning in the moving vortex state can be enhanced in the random arrays compared to the conformal arrays, leading to crossing of the velocity-force curves.
Nb-doped SrTiO$_{3}$ epitaxial thin films have been prepared on (001) SrTiO$_{3}$ substrates using pulsed laser deposition. A high substrate temperature ($>1000^{circ}{C}$) was found to be necessary to achieve 2-dimensional growth. Atomic force microscopy reveals atomically flat surfaces with 3.9 AA $ $ steps. The films show a metallic behavior, residual resistivity ratios between 10 and 100, and low residual resistivity of the order of 10$^{-4}$$Omega$cm. At 0.3 K, a sharp superconducting transition, reaching zero resistance, is observed.
160 - M. Pozek , I. Kupcic , A. Dulcic 2007
Ru{1-x}Sn{x}Sr2EuCu2O8 and Ru{1-x}Sn{x}Sr2GdCu2O8 have been comprehensively studied by microwave and dc resistivity and magnetoresistivity and by the dc Hall measurements. The magnetic ordering temperature T_m is considerably reduced with increasing Sn content. However, doping with Sn leads to only slight reduction of the superconducting critical temperature T_c accompanied with the increase of the upper critical field B_c2, indicating an increased disorder in the system and a reduced scattering length of the conducting holes in CuO2 layers. In spite of the increased scattering rate, the normal state resistivity and the Hall resistivity are reduced with respect to the pure compound, due to the increased number of itinerant holes in CuO2 layers, which represent the main conductivity channel. Most of the electrons in RuO2 layers are presumably localized, but the observed negative magnetoresistance and the extraordinary Hall effect lead to the conclusion that there exists a small number of itinerant electrons in RuO$_2$ layers that exhibit colossal magnetoresistance.
123 - Gang Mu , Bin Zeng , Xiyu Zhu 2009
Superconductivity was achieved in PrFeAsO by partially substituting Pr^{3+} with Sr^{2+}. The electrical transport properties and structure of this new superconductor Pr_{1-x}Sr_xFeAsO at different doping levels (x = 0.05$sim$ 0.25) were investigated systematically. It was found that the lattice constants (a-axis and c-axis) increase monotonously with Sr or hole concentration. The superconducting transition temperature at about 16.3 K (95% $rho_n$) was observed around the doping level of 0.20$sim$ 0.25. A detailed investigation was carried out in the sample with doping level of x = 0.25. The domination of hole-like charge carriers in this material was confirmed by Hall effect measurements. The magnetoresistance (MR) behavior can be well described by a simple two-band model. The upper critical field of the sample with T_c = 16.3 K (x = 0.25) was estimated to be beyond 45 Tesla. Our results suggest that the hole-doped samples may have higher upper critical fields comparing to the electron-doped ones, due to the higher quasi-particle density of states at the Fermi level.
110 - I. Kusevic , E. Babic , O. Husnjak 2003
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB$_{2}$ tapes have been measured at temperatures $Tgeq 28$ K in magnetic fields $Bleq 0.9$ T. The irreversibility line $B_{irr}(T)$ for doped tape shows a stepwise variation with a kink around 0.3 T. Such $B_{irr}(T)$ variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field $% B_{phi}$) and is very different from a smooth $B_{irr}(T)$ variation in undoped MgB$_{2}$ samples. The microstructure studies of nanoparticle doped MgB$_{2}$ samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا