Do you want to publish a course? Click here

Magnetic ordering in Sr2RuO4 induced by nonmagnetic impurities

70   0   0.0 ( 0 )
 Added by Minakata Masanari
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report unusual effects of nonmagnetic impurities on the spin-triplet superconductor Sr2RuO4. The substitution of nonmagnetic Ti4+ for Ru4+ induces localized-moment magnetism characterized by unexpected Ising anisotropy with the easy axis along the interlayer c direction. Furthermore, for x(Ti) > 0.03 magnetic ordering occurs in the metallic state with the remnant magnetization along the c-axis. We argue that the localized moments are induced in the Ru4+ and/or oxygen ions surrounding Ti4+ and that the ordering is due to their interaction mediated by itinerant Ru-4d electrons with strong spin fluctuations.



rate research

Read More

62 - M. Ulmke , R. Scalettar 1997
The two-dimensional Hubbard model with a bimodal distribution of on-site interactions, P(U_i) = (1-f)delta(U_i-U) + fdelta(U_i), is studied using a finite temperature quantum Monte Carlo technique and dynamical mean-field theory. We find long range antiferromagnetic order off half-filling is stabilized by the disorder, due to localization of the dopants on the U=0 sites. Whereas in the clean model there is a single gap at n=1, for nonzero f we find the compressibility and density of states exhibit gaps at two separate fillings.
106 - Y. Sidis , P. Bourges , B. Keimer 2000
Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in $rm YBa_2Cu_3O_{7}$, as investigated by inelastic neutron scattering measurements.
We revealed that the superconducting transition temperature Tc of the multi-component superconductor Sr2RuO4 is enhanced to 3.3 K under in-plane uniaxial pressure that reduces the tetragonal crystal symmetry. This result suggests that new superconducting phases with a one-component order parameter are induced. We have also clarified the inplane pressure direction dependence of the emergence of this higher-Tc superconducting phase: pressure along the [100] direction is more favorable than pressure along the [110] direction. This result is probably closely related to the direct shortening of the in-plane Ru-O bond length along the pressure direction and the approach of the gamma Fermi surface to the van Hove singularity under the pressure parallel to the [100] direction.
203 - N. Tsujii , O. Suzuki , H. Suzuki 2005
The Haldane system PbNi2V2O8 was investigated by the temperature dependent magnetization M(T) measurements at fields higher than H_c, with H_c the critical fields necessary to close the Haldane gap. It is revealed that M(T) for H > H_c exhibits a cusp-like minimum at T_{min}, below which M(T) increases with decreasing T having a convex curve. These features have been observed for both $H parallel c$ and $H perp c$, with c-axis being parallel to the chain. These data indicate the occurrence of field-induced magnetic ordering around T_{min}. Phase boundaries for $H parallel c$ and $H perp c$ do not cross each other, consistent with the theoretical calculation for negative single-ion anisotropy D.
Multiferroic CuFe1-xAlxO2 (x=0.02) exhibits a ferroelectric ordering accompanied by a proper helical magnetic ordering below T=7K under zero magnetic field. By polarized neutron diffraction and pyroelectric measurements, we have revealed a one-to-one correspondence between the spin helicity and the direction of the spontaneous electric polarization. This result indicates that the spin helicity of the proper helical magnetic ordering is essential for the ferroelectricity in CuFe1-xAlxO2. The induction of the electric polarization by the proper helical magnetic ordering is, however, cannot be explained by the Katsura-Nagaosa-Balatsky model, which successfully explains the ferroelectricity in the recently explored ferroelectric helimagnets, such as TbMnO3. We thus conclude that CuFe1-xAlxO2 is a new class of magnetic ferroelectrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا