Do you want to publish a course? Click here

Magnetic resonance peak and nonmagnetic impurities

107   0   0.0 ( 0 )
 Added by Bourges
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in $rm YBa_2Cu_3O_{7}$, as investigated by inelastic neutron scattering measurements.



rate research

Read More

The influence of La non magnetic impurities on the spin dynamics of CeCoIn$_{5}$ was studied by inelastic neutron scattering. In La-substituted systems, the spin resonance peak (observed at $Omega_{res}=0.55 meV$ in the pure system) is shifted to lower energies but the ratio $Omega_{res}/k_{B}T_{c}$ remains unchanged. The excitation broadens till it reaches 0.3 meV equal to the value of the quasi-elastic signal in the normal state. The evolution of La substitution is compared with the evolution of the magnetic resonance in Ni and Zn substituted YBa$_{2}$Cu$_{3}$O$_{7}$.
We study the spin resonance in superconducting state of iron-based materials within multiband models with two unequal gaps, $Delta_L$ and $Delta_S$, on different Fermi surface pockets. We show that due to the indirect nature of the gap entering the spin susceptibility at the nesting wave vector $mathbf{Q}$ the total gap $tildeDelta$ in the bare susceptibility is determined by the sum of gaps on two different Fermi surface sheets connected by $mathbf{Q}$. For the Fermi surface geometry characteristic to the most of iron pnictides and chalcogenides, the indirect gap is either $tildeDelta = Delta_L + Delta_S$ or $tildeDelta = 2Delta_L$. In the $s_{++}$ state, spin excitations below $tildeDelta$ are absent unless additional scattering mechanisms are assumed. The spin resonance appears in the $s_pm$ superconducting state at frequency $omega_R leq tildeDelta$. Comparison with available inelastic neutron scattering data confirms that what is seen is the true spin resonance and not a peak inherent to the $s_{++}$ state.
391 - X. F. Sun 2009
To investigate the validity of the Wiedemann-Franz (WF) law in disordered but metallic cuprates, the low-temperature charge and heat transport properties are carefully studied for a series of impurity-substituted and carrier-overdoped La_{1.8}Sr_{0.2}Cu_{1-z}M_zO_4 (M = Zn or Mg) single crystals. With moderate impurity substitution concentrations of z = 0.049 and 0.082 (M = Zn), the resistivity shows a clear metallic behavior at low temperature and the WF law is confirmed to be valid. With increasing impurity concentration to z = 0.13 (M = Zn) or 0.15 (M = Mg), the resistivity shows a low-T upturn but its temperature dependence indicates a finite conductivity in the T to 0 limit. In this weakly-localized metallic state that is intentionally achieved in the overdoped regime, a {it negative} departure from the WF law is found, which is opposite to the theoretical expectation.
171 - D. X. Yao , E. W. Carlson 2008
Checkerboard patterns have been proposed in order to explain STM experiments on the cuprates BSCCO and Na-CCOC. However the presence of these patterns has not been confirmed by a bulk probe such as neutron scattering. In particular, simple checkerboard patterns are inconsistent with neutron scattering data, in that they have low energy incommsensurate (IC) spin peaks rotated 45 degrees from the direction of the charge IC peaks. However, it is unclear whether other checkerboard patterns can solve the problem. In this paper, we have studied more complicated checkerboard patterns (modulated checkerboards) by using spin wave theory and analyzed noncollinear checkerboards as well. We find that the high energy response of the modulated checkerboards is inconsistent with neutron scattering results, since they fail to exhibit a resonance peak at (pi,pi), which has recently been shown to be a universal feature of cuprate superconductors. We further argue that the newly proposed noncollinear checkerboard also lacks a resonance peak. We thus conclude that to date no checkerboard pattern has been proposed which satisfies both the low energy constraints and the high energy constraints imposed by the current body of experimental data in cuprate superconductors.
54 - P.-C. Ho , S. Moehlecke , 2003
The different pinning strengths of the flux line lattice in the peak effect (PE) region of a polycrystalline sample of CeRu$_2$ with a superconducting transition temperature {$T_c = 6.1$ K} have been probed by means of magnetization measurements with a SQUID magnetometer as the temperature $T$ and the magnetic field $H$ are varied. Magnetic relaxation measurements were used to monitor the flux line dynamics in the PE region. For {$T < 4.5$ K} and $H < H_P$, where $H_P$ is the field where the magnetization reaches a maximum in the PE region, the relaxation rate was found to be significantly larger in the descending-field branch of the PE than it is in other sections of the PE region. For {$T geq 4.5$ K}, the relaxation rate in the entire PE region is so large that the magnetization reached a stable (equilibrium) value within {$10^4$ s}. This experimentally determined stable state appears as an increase of the magnetization in the PE region and has a dome shape superimposed on a linear interpolation through the PE region. It was also found that the PE in CeRu$_2$ can be suppressed by rapid thermal cycling of the sample between {10 K} and {300 K} four times. The reversible magnetization after the PE has been suppressed coincides with the linear interpolation through the PE region, in contrast to the behavior of the equilibrium magnetization when the PE is present. PACS number: 74.25.Qt, 74.70.Ad
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا