Do you want to publish a course? Click here

Equilibrium Configurations and Energetics of Point Defects in Two-Dimensional Colloidal Crystals

91   0   0.0 ( 0 )
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a novel method of introducing point defects (mono and di-vacancies) in a confined mono-layer colloidal crystal by manipulating individual particles with optical tweezers. Digital video microscopy is used to study defect dynamics in real space and time. We analyze the topological arrangements of the particles in the defect core and establish their connection with the energetics of the system. It is found that thermal fluctuations excite point defects into textit{dislocation multipole} configurations. We extract the dislocation pair potential at near field, where cores overlap and linear elasticity is not applicable.

rate research

Read More

We establish an explicit data-driven criterion for identifying the solid-liquid transition of two-dimensional self-propelled colloidal particles in the far from equilibrium parameter regime, where the transition points predicted by different conventional empirical criteria for melting and freezing diverge. This is achieved by applying a hybrid machine learning approach that combines unsupervised learning with supervised learning to analyze over one million of systems configurations in the nonequilibrium parameter regime. Furthermore, we establish a generic data-driven evaluation function, according to which the performance of different empirical criteria can be systematically evaluated and improved. In particular, by applying this evaluation function, we identify a new nonequilibrium threshold value for the long-time diffusion coefficient, based on which the predictions of the corresponding empirical criterion are greatly improved in the far from equilibrium parameter regime. These data-driven approaches provide a generic tool for investigating phase transitions in complex systems where conventional empirical ones face difficulties.
We provide a quantitative analysis of all kinds of topological defects present in 2D passive and active repulsive disk systems. We show that the passage from the solid to the hexatic is driven by the unbinding of dislocations. Instead, although we see dissociation of disclinations as soon as the liquid phase appears, extended clusters of defects largely dominate below the solid-hexatic critical line. The latter percolate at the hexatic-liquid transition in continuous cases or within the coexistence region in discontinuous ones, and their form gets more ramified for increasing activity.
We report on a novel and flexible experiment to investigate the non-equilibrium melting behaviour of model crystals made from charged colloidal spheres. In a slit geometry polycrystalline material formed in a low salt region is driven by hydrostatic pressure up an evolving gradient in salt concentration and melts at large salt concentration. Depending on particle and initial salt concentration, driving velocity and the local salt concentration complex morphologic evolution is observed. Crystal-melt interface positions and the melting velocity are obtained quantitatively from time resolved Bragg- and polarization microscopic measurements. A simple theoretical model predicts the interface to first advance, then for balanced drift and melting velocities to become stationary at a salt concentration larger than the equilibrium melting concentration. It also describes the relaxation of the interface to its equilibrium position in a stationary gradient after stopping the drive in different manners. We further discuss the influence of the gradient strength on the resulting interface morphology and a shear induced morphologic transition from polycrystalline to oriented single crystalline material before melting.
We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that, in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2 * 10^-8. This is some three orders of magnitude lower than the concentration of vacancies. A simple, analytical estimate yields a value that is in fair agreement with the numerical results.
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا