Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and characterized by Scanning Tunneling Spectroscopy and transmission electron microscopy. The doped nanotubes are all metallic and exhibit strong electron donor states near the Fermi level. Using tight-binding and ab initio calculations, we observe that pyridine-like N structures are responsible for the metallic behavior and the prominent features near the Fermi level. These electron rich structures are the first example of n-type nanotubes, which could pave the way to real molecular hetero-junction devices.
Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.
The n-type doping of Ge is a self-limiting process due to the formation of vacancy-donor complexes (DnV with n <= 4) that deactivate the donors. This work unambiguously demonstrates that the dissolution of the dominating P4V clusters in heavily phosphorus-doped Ge epilayers can be achieved by millisecond-flash lamp annealing at about 1050 K. The P4V cluster dissolution increases the carrier concentration by more than three-fold together with a suppression of phosphorus diffusion. Electrochemical capacitance-voltage measurements in conjunction with secondary ion mass spectrometry, positron annihilation lifetime spectroscopy and theoretical calculations enabled us to address and understand a fundamental problem that has hindered so far the full integration of Ge with complementary-metal-oxide-semiconductor technology.
We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.
Nitrogen doped single wall carbon nanotubes have many functional benefits. Doping opens the possibility to control the electronic energy levels, surface energy, surface reactivity and charge carrier density. The additional electron in the outer shell changes the electronic properties of the nanotubes when introduced into the carbon lattice. Here we present the latest findings in the in-situ doping during synthesis of single wall carbon nanotubes using caffeine as a precursor of both carbon and nitrogen. A special furnace with two heating elements allowed us to sublimate and decompose the solid precursor. Caffeine allowed us to reach a high doping percentage with high quality nanotubes directly in a one-step synthesis procedure.
We investigate the effects of impurity scattering on the conductance of metallic carbon nanotubes as a function of the relative separation of the impurities. First we compute the conductance of a clean (6,6) tube, and the effect of model gold contacts on this conductance. Then, we compute the effect of introducing a single, two, and three oxygen atom impurities. We find that the conductance of a single-oxygen-doped (6,6) nanotube decreases by about 30 % with respect to that of the perfect nanotube. The presence of a second doping atom induces strong changes of the conductance which, however, depend very strongly on the relative position of the two oxygen atoms. We observe regular oscillations of the conductance that repeat over an O-O distance that corresponds to an integral number of half Fermi-wavelengths ($mlambda_F/2$). These fluctuations reflect strong electron interference phenomena produced by electron scattering from the oxygen defects whose contribution to the resistance of the tube cannot be obtained by simply summing up their individual contributions.