Do you want to publish a course? Click here

Localization Transition in Multilayered Disordered Systems

109   0   0.0 ( 0 )
 Added by Evagellou Spyros
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Anderson delocalization-localization transition is studied in multilayered systems with randomly placed interlayer bonds of density $p$ and strength $t$. In the absence of diagonal disorder (W=0), following an appropriate perturbation expansion, we estimate the mean free paths in the main directions and verify by scaling of the conductance that the states remain extended for any finite $p$, despite the interlayer disorder. In the presence of additional diagonal disorder ($W > 0$) we obtain an Anderson transition with critical disorder $W_c$ and localization length exponent $ u$ independently of the direction. The critical conductance distribution $P_{c}(g)$ varies, however, for the parallel and the perpendicular directions. The results are discussed in connection to disordered anisotropic materials.



rate research

Read More

We investigate disordered graphene with strong long-range impurities. Contrary to the common belief that delocalization should persist in such a system against any disorder, as the system is ex-pected to be equivalent to a disordered two-dimensional Dirac Fermionic system, we find that states near the Dirac points are localized for sufficiently strong disorder and the transition between the localized and delocalized states is of Kosterlitz-Thouless type. Our results show that the transition originates from bounding and unbounding of local current vortices.
We investigate the transition induced by disorder in a periodically-driven one-dimensional model displaying quantized topological transport. We show that, while instantaneous eigenstates are necessarily Anderson localized, the periodic driving plays a fundamental role in delocalizing Floquet states over the whole system, henceforth allowing for a steady state nearly-quantized current. Remarkably, this is linked to a localization/delocalization transition in the Floquet states of a one dimensional driven Anderson insulator, which occurs for periodic driving corresponding to a nontrivial loop in the parameter space. As a consequence, the Floquet spectrum becomes continuous in the delocalized phase, in contrast with a pure-point instantaneous spectrum.
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of $a>0$. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops ($a<1$) and short-range hops ($a>1$) in which the wave function amplitude falls off algebraically with the same power $gamma$ from the localization center.
The notion of Thouless energy plays a central role in the theory of Anderson localization. We investigate the scaling of Thouless energy across the many-body localization (MBL) transition in a Floquet model. We use a combination of methods that are reliable on the ergodic side of the transition (e.g., spectral form factor) and methods that work on the MBL side (e.g. typical matrix elements of local operators) to obtain a complete picture of the Thouless energy behavior across the transition. On the ergodic side, the Thouless energy tends to a value independent of system size, while at the transition it becomes comparable to the level spacing. Different probes yield consistent estimates of the Thouless energy in their overlapping regime of applicability, giving the location of the transition point nearly free of finite-size drift. This work establishes a connection between different definitions of Thouless energy in a many-body setting, and yields new insights into the MBL transition in Floquet systems.
We theoretically study transport properties in one-dimensional interacting quasiperiodic systems at infinite temperature. We compare and contrast the dynamical transport properties across the many-body localization (MBL) transition in quasiperiodic and random models. Using exact diagonalization we compute the optical conductivity $sigma(omega)$ and the return probability $R(tau)$ and study their average low-frequency and long-time power-law behavior, respectively. We show that the low-energy transport dynamics is markedly distinct in both the thermal and MBL phases in quasiperiodic and random models and find that the diffusive and MBL regimes of the quasiperiodic model are more robust than those in the random system. Using the distribution of the DC conductivity, we quantify the contribution of sample-to-sample and state-to-state fluctuations of $sigma(omega)$ across the MBL transition. We find that the activated dynamical scaling ansatz works poorly in the quasiperiodic model but holds in the random model with an estimated activation exponent $psiapprox 0.9$. We argue that near the MBL transition in quasiperiodic systems, critical eigenstates give rise to a subdiffusive crossover regime on finite-size systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا