Do you want to publish a course? Click here

Localization, topology and quantized transport in disordered Floquet systems

110   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the transition induced by disorder in a periodically-driven one-dimensional model displaying quantized topological transport. We show that, while instantaneous eigenstates are necessarily Anderson localized, the periodic driving plays a fundamental role in delocalizing Floquet states over the whole system, henceforth allowing for a steady state nearly-quantized current. Remarkably, this is linked to a localization/delocalization transition in the Floquet states of a one dimensional driven Anderson insulator, which occurs for periodic driving corresponding to a nontrivial loop in the parameter space. As a consequence, the Floquet spectrum becomes continuous in the delocalized phase, in contrast with a pure-point instantaneous spectrum.



rate research

Read More

The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of $a>0$. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops ($a<1$) and short-range hops ($a>1$) in which the wave function amplitude falls off algebraically with the same power $gamma$ from the localization center.
Disorder in quantum systems can lead to the disruption of long-range order in the ground state and to the localization of the elementary excitations - famous examples thereof being the Bose glass of interacting bosons in a disordered or quasi-periodic environment, or the localized phase of spin chains mapping onto fermions. Here we present a two-dimensional quantum Ising model - relevant to the physics of Rydberg-atom arrays - in which positional disorder of the spins induces a randomization of the spin-spin couplings and of an on-site longitudinal field. This form of disorder preserves long-range order in the ground state, while it localizes the elementary excitations above it, faithfully described as spin waves: the spin-wave spectrum is partially localized for weak disorder (seemingly exhibiting mobility edges between localized and extended, yet non-ergodic states), while it is fully localized for strong disorder. The regime of partially localized excitations exhibits a very rich non-equilibrium dynamics following a low-energy quench: correlations and entanglement spread with a power-law behavior whose exponent is a continuous function of disorder, interpolating between ballistic and arrested transport. Our findings expose a stark dichotomy between static and dynamical properties of disordered quantum spin systems, which is readily accessible to experimental verification using quantum simulators of closed quantum many-body systems.
Time-periodic (Floquet) drive is a powerful method to engineer quantum phases of matter, including fundamentally non-equilibrium states that are impossible in static Hamiltonian systems. One characteristic example is the anomalous Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator, yet is amenable to bulk localization. We study the response of this topological system to time-dependent noise, which breaks the topologically protecting Floquet symmetry. Surprisingly, we find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude. We trace this robust topology to an interplay between diffusion and Pauli blocking of edge state decay, which we expect should be robust against interactions. We determine the boundaries of the topological phase for a system with spatial disorder numerically through level statistics, and corroborate our results in the limit of vanishing disorder through an analytical Floquet superoperator approach. This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase. We comment on quantization of other topological responses in the absence of Floquet symmetry and potential experimental realizations.
126 - Marie Piraud 2011
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transport anisotropy. Moreover, working beyond the self-consistent theory of localization, we include the disorder-induced shift of the energy states and show that it strongly affects the mobility edge. Implications to recent experiments are discussed.
We study energy transport in XXZ spin chains driven to nonequilibrium configurations by thermal reservoirs of different temperatures at the boundaries. We discuss the transition between diffusive and subdiffusive transport regimes in sectors of zero and finite magnetization at high temperature. At large anisotropies we find that diffusive energy transport prevails over a large range of disorder strengths, which is in contrast to spin transport that is subdiffusive in the same regime for weak disorder strengths. However, when finite magnetization is induced, both energy and spin currents decay as a function of system size with the same exponent. Based on this, we conclude that diffusion of energy is much more pervasive than that of magnetization in these disordered spin-1/2 systems, and occurs across a significant range of the interaction-disorder parameter phase-space; we suggest this is due to conservation laws present in the clean XXZ limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا