Do you want to publish a course? Click here

Heavy-Fermions in LiV2O4: Kondo-Compensation vs. Spin-Liquid Behavior?

81   0   0.0 ( 0 )
 Added by Norbert Buettgen
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

7Li NMR measurements were performed in the metallic spinel LiV2O4. The temperature dependencies of the line width, the Knight shift and the spin-lattice relaxation rate were investigated in the temperature range 30 mK < T < 280 K. For temperatures T < 1 K we observe a spin-lattice relaxation rate which slows down exponentially. The NMR results can be explained by a spin-liquid behavior and the opening of a spin gap of the order 0.6 K.



rate research

Read More

Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo$_2$Ga$_8$. Resistivity measurements at ambient pressure reveal the onset of coherence at $T^*approx 20,$K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 K to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 K and 2 K and reaches 800 mJ/mol K$^2$ at 1 K, suggesting that CeCo$_2$Ga$_8$ is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional (1D) spin chain from 300 K down to $T^*$, and first-principles calculations predict flat Fermi surfaces for the itinerant $f$-electron bands. These suggest that CeCo$_2$Ga$_8$ is a rare example of the quasi-1D Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh$_2$Si$_2$ family. The study of the quasi-one-dimensional CeCo$_2$Ga$_8$ family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
286 - M. Acquarone , C.I. Ventura 2008
Recent inelastic neutron scattering experiments in CeIn$_{3}$ and CePd$_{2}$Si$_{2}$ single crystals measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong competition between the Ruderman-Kittel-Kasuya-Yosida(RKKY) interaction and Kondo effect is evidenced by their nearly equal Neel and Kondo temperatures. Our aim is to show how magnons such as measured in the antiferromagnetic phase of these Ce compounds, can be described with a microscopic Heisenberg-Kondo model introduced by J.R.Iglesias, C.Lacroix and B.Coqblin, used before for studies of the non-magnetic phase. The model includes the correlated Ce-$4 f$ electrons hybridized with the conduction band, where we also allow for correlations, and we consider competing RKKY (Heisenberg-like $J_{H} $) and Kondo ($J_{K}$) antiferromagnetic couplings. Carrying on a series of unitary transformations, we perturbatively derive a second-order effective Hamiltonian which, projected onto the antiferromagnetic electron ground state, describes the spin wave excitations, renormalized by their interaction with correlated itinerant electrons. We numerically study how the different parameters of the model influence the renormalization of the magnons, yielding useful information for the analysis of inelastic neutron scattering experiments in antiferromagnetic heavy fermion compounds. We also compare our results with the available experimental data, finding good agreement with the spin wave measurements in cubic CeIn$_3$.
CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = Theta_CW/Tm ~67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.
121 - C. Y. Guo , C. Cao , M. Smidman 2016
Materials where the electronic bands have unusual topologies allow for the realization of novel physics and have a wide range of potential applications. When two electronic bands with linear dispersions intersect at a point, the excitations could be described as Weyl fermions which are massless particles with a particular chirality. Here we report evidence for the presence of Weyl fermions in the ferromagnetic state of the low-carrier density, strongly correlated Kondo lattice system CeSb, from electronic structure calculations and angle-dependent magnetoresistance measurements. When the applied magnetic field is parallel to the electric current, a pronounced negative magnetoresistance is observed within the ferromagnetic state, which is destroyed upon slightly rotating the field away. These results give evidence for CeSb belonging to a new class of Kondo lattice materials with Weyl fermions in the ferromagnetic state.
Recent inelastic neutron scattering experiments in CeIn3 and CePd2Si2 single crystals, measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong competition between the Ruderman-Kittel-Kasuya-Yosida(RKKY) interaction and Kondo effect is evidenced by their nearly equal Neel and Kondo temperatures. Our aim is to show how magnons such as measured in the antiferromagnetic phase of these Ce compounds, can be described with a microscopic Heisenberg-Kondo model as introduced by J.R.Iglesias, C.Lacroix and B.Coqblin, used before for studies of the non-magnetic phase. The model includes the correlated Ce-4f electrons hybridized with the conduction band, and we consider competing RKKY (Heisenberg-like J_{H}) and Kondo (J_{K}) antiferromagnetic couplings. Carrying on a series of unitary transformations, we perturbatively derive a second-order effective Hamiltonian which, projected onto the antiferromagnetic electron ground state, describes the spin wave excitations, renormalized by their interaction with correlated itinerant electrons. We numerically study how the different parameters of the model influence the renormalization of the magnons, yielding useful information for the analysis of inelastic neutron scattering experiments in antiferromagnetic heavy fermion compounds. We also compare our results with available experimental data, finding good agreement with the spin wave measurements in cubic CeIn3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا