No Arabic abstract
Classical transport properties of an electron, moving in plain, in an array of magnetic antidot has been calculated. The homogeneous magnetic field in z-direction fills the whole space except of cylinders of radius r_0. The magnetoresistance shows additional peak and minimum according to pinned orbits at antidots and to propagating orbits in transport direction, respectively.
We present a solid state magnetic field imaging technique using a two dimensional array of spins in diamond. The magnetic sensing spin array is made of nitrogen-vacancy (NV) centers created at shallow depths. Their optical response is used for measuring external magnetic fields in close proximity. Optically detected magnetic resonance (ODMR) is readout from a 60x60 $mu$m field of view in a multiplexed manner using a CCD camera. We experimentally demonstrate full two-dimensional vector imaging of the magnetic field produced by a pair of current carrying micro-wires. The presented widefield NV magnetometer offers in addition to its high magnetic sensitivity of 20 nT/$sqrt{Hz}$ and vector reconstruction, an unprecedented spatio-temporal resolution and functionality at room temperature.
Graphene on hexagonal boron-nitride (h-BN) is an atomically flat conducting system that is ideally suited for probing the effect of Zeeman splitting on electron transport. We demonstrate by magneto-transport measurements that a parallel magnetic field up to 30 Tesla does not affect the transport properties of graphene on h-BN even at charge neutrality where such an effect is expected to be maximal. The only magnetoresistance detected at low carrier concentrations is shown to be associated with a small perpendicular component of the field which cannot be fully eliminated in the experiment. Despite the high mobility of charge carries at low temperatures, we argue that the effects of Zeeman splitting are fully masked by electrostatic potential fluctuations at charge neutrality.
Spin textures such as skyrmions and magnetic vortices are good candidates for a variety of applications, such as magnetic memories, oscillators and neuromorphic computing. Understanding the magnetic process of these systems is important, as it determines the systems response in field and frequency. In this work, we investigated the magnetization process of single microdisks by measuring their magnetotransport properties as a function of temperature. The strong dependence of resistance on the disks magnetic state helped us understand the magnetization configurations of a single microdisk for different temperatures and fields. We determined the thermal barriers for the nucleation and annihilation processes by fitting the nucleation and annihilation fields to an exponential model. Moreover, we observed and characterized the domain wall depinning effect for temperatures below 100 K. This effect prevents the formation of a magnetic vortex during the nucleation process.
Magnetic semiconductors are a powerful platform for understanding, utilizing and tuning the interplay between magnetic order and electronic transport. Compared to bulk crystals, two-dimensional magnetic semiconductors have greater tunability, as illustrated by the gate modulation of magnetism in exfoliated CrI$_3$ and Cr$_2$Ge$_2$Te$_6$, but their electrically insulating properties limit their utility in devices. Here we report the simultaneous electrostatic and magnetic control of electronic transport in atomically-thin CrSBr, an A-type antiferromagnetic semiconductor. Through magnetotransport measurements, we find that spin-flip scattering from the interlayer antiferromagnetic configuration of multilayer flakes results in giant negative magnetoresistance. Conversely, magnetoresistance of the ferromagnetic monolayer CrSBr vanishes below the Curie temperature. A second transition ascribed to the ferromagnetic ordering of magnetic defects manifests in a large positive magnetoresistance in the monolayer and a sudden increase of the bulk magnetic susceptibility. We demonstrate this magnetoresistance is tunable with an electrostatic gate, revealing that the ferromagnetic coupling of defects is carrier mediated.
The effect of microwave radiation on low-temperature electron magnetotransport in a square antidot lattice with a period of d = 0.8 micrometer based on a GaAs quantum well with two occupied energy subbands E1 and E2 is investigated. It is shown that, owing to a significant difference between the electron densities in the subbands, commensurability oscillations of the resistance in the investigated antidot lattice are observed only for the first subband. It is found that microwave irradiation under the cyclotron resonance condition results in the formation of resistance oscillations periodic in the inverse magnetic field in the region of the main commensurability peak. It is established that the period of these oscillations corresponds to the period of magneto-intersubband oscillations. The observed effect is explained by the increase in the rate of intersubband scattering caused by the difference between the electron heating in the subbands E1 and E2.