Do you want to publish a course? Click here

Hidden low-temperature magnetic order revealed through magnetotransport in monolayer CrSBr

88   0   0.0 ( 0 )
 Added by Evan Telford
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic semiconductors are a powerful platform for understanding, utilizing and tuning the interplay between magnetic order and electronic transport. Compared to bulk crystals, two-dimensional magnetic semiconductors have greater tunability, as illustrated by the gate modulation of magnetism in exfoliated CrI$_3$ and Cr$_2$Ge$_2$Te$_6$, but their electrically insulating properties limit their utility in devices. Here we report the simultaneous electrostatic and magnetic control of electronic transport in atomically-thin CrSBr, an A-type antiferromagnetic semiconductor. Through magnetotransport measurements, we find that spin-flip scattering from the interlayer antiferromagnetic configuration of multilayer flakes results in giant negative magnetoresistance. Conversely, magnetoresistance of the ferromagnetic monolayer CrSBr vanishes below the Curie temperature. A second transition ascribed to the ferromagnetic ordering of magnetic defects manifests in a large positive magnetoresistance in the monolayer and a sudden increase of the bulk magnetic susceptibility. We demonstrate this magnetoresistance is tunable with an electrostatic gate, revealing that the ferromagnetic coupling of defects is carrier mediated.



rate research

Read More

78 - G. Q. Zhang , N. Kang , J. Y. Li 2018
Confinement and edge structures are known to play significant roles in electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we have observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We have also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.
We study a three-dimensional chiral second order topological insulator (SOTI) subject to a magnetic field. Via its gauge field, the applied magnetic field influences the electronic motion on the lattice, and via the Zeeman effect, the field influences the electronic spin. We compare two approaches to the problem: an effective surface theory, and a full lattice calculation. The surface theory predicts a massive Dirac spectrum on each of the gapped surfaces, giving rise to Landau levels once the surfaces are pierced by magnetic flux. The surface theory qualitatively agrees with our lattice calculations, accurately predicting the surface gap as well as the spin and orbital components of the states at the edges of the surface Dirac bands. In the context of the lattice theory, we calculate the spectrum with and without magnetic field and find a deviation from the surface theory when a gauge field is applied. The energy of the lowest-lying Landau level is found closer to zero than is predicted by the surface theory, which leads to an observable magnetotransport signature: inside the surface gap, there exist different energy regions where either one or two chiral hinge modes propagate in either direction, quantizing the differential conductance to either one or two conductance quanta.
The recent discovery of two-dimensional (2D) magnets offers unique opportunities for the experimental exploration of low-dimensional magnetism4 and the magnetic proximity effects, and for the development of novel magnetoelectric, magnetooptic and spintronic devices. These advancements call for 2D materials with diverse magnetic structures as well as effective probes for their magnetic symmetries, which is key to understanding intralayer magnetic order and interlayer magnetic coupling. Here we apply second harmonic generation (SHG), a technique acutely sensitive to symmetry breaking, to probe the magnetic structure of a new 2D magnetic semiconductor, CrSBr. We find that CrSBr monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a giant magnetic dipole SHG effect in the centrosymmetric 2D structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, with the Neel temperature notably increasing with decreasing layer number. The magnetic structure of CrSBr, comprising spins co-aligned in-plane with rectangular unit cell, differs markedly from the prototypical 2D hexagonal magnets CrI3 and Cr2Ge2Te6 with out-of-plane moments. Moreover, our SHG analysis suggests that the order parameters of the ferromagnetic monolayer and the antiferromagnetic bilayer are the magnetic dipole and the magnetic toroidal moments, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and SHG as a powerful tool to probe 2D magnetic symmetry, opening the door to the exploration of coupling between magnetic order and excitonic/electronic properties, as well as the magnetic toroidal moment, in a broad range of applications.
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe$_2$ monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional (2D) materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy, we also observe the excited A-excitons state $2s$. Detuning of the continuous wave, low power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and magneto-electric hardware. [1] Unlike conventional covalently-bonded bulk materials, van der Waals (vdW)-bonded layered magnets [2-4] offer exceptional degrees of freedom for engineering spin textures. [5] However, their structural instability has hindered microscopic studies and manipulations. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr creating novel spin textures down to the atomic scale. We show that it is possible to drive a local structural phase transformation using an electron beam that locally exchanges the bondings in different directions, effectively creating regions that have vertical vdW layers embedded within the horizontally vdW bonded exfoliated flakes. We calculate that the newly formed 2D structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes. Our study lays the groundwork for designing and studying novel spin textures and related quantum magnetic phases down to single-atom sensitivity, potentially to create on-demand spin Hamiltonians probing fundamental concepts in physics, [6-10] and for realizing high-performance spintronic, magneto-electric and topological devices with nanometer feature sizes. [11,12]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا