Do you want to publish a course? Click here

Thermodynamic stability of Fe/O solid solution at inner-core conditions

257   0   0.0 ( 0 )
 Added by Dario Alf\\`e
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new technique which allows the fully {em ab initio} calculation of the chemical potential of a substitutional impurity in a high-temperature crystal, including harmonic and anharmonic lattice vibrations. The technique uses the combination of thermodynamic integration and reference models developed recently for the {em ab initio} calculation of the free energy of liquids and anharmonic solids. We apply the technique to the case of the substitutional oxygen impurity in h.c.p. iron under Earths core conditions, which earlier static {em ab initio} calculations indicated to be thermodynamically very unstable. Our results show that entropic effects arising from the large vibrational amplitude of the oxygen impurity give a major reduction of the oxygen chemical potential, so that oxygen dissolved in h.c.p. iron may be stabilised at concentrations up a few mol % under core conditions.



rate research

Read More

Boundary conditions for the solid-liquid interface of the solidifying pure melt have been derived. In the derivation the model of Gibbs interface is used. The boundary conditions include both the state quantities of bulk phases are taken at the interface and the quantities characterizing interfacial surface such as the surface temperature and the surface heat flux. Introduction of the surface temperature as an independent variable allows us to describe the scattering energy at the interface. For the steady-state motion of the planar interface the expression for the temperature discontinuity across the phase boundary has been obtained. Effect of Kapitza resistance on the interface velocity is considered. It is shown that heat resistance leads to non-linearity in solidification kinetics, namely, in velocity-undercooling relationship. The conditions of the steady--state motion of the planar interface has been found.
The solid inner core of the Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. There have been a growing number of papers investigating C and H as possible light elements in the core, but the results are contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Using the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4 and Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3 and FeH4 are stable iron hydrides at these conditions. For Fe3C, the cementite structure (Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures found here. We found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable structures, in both compounds containing trivalent iron. The density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.percent (2.6-3.7 wt.percent) at relevant pressures and temperatures. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from the Birchs law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high, 17-22 mol.percent (0.4-0.5 wt.percent), which corresponds to the average atomic mass in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.
Three different special quasirandom structures (SQS) of the substitutional hcp $A_{1-x}B_x$ binary random solutions ($x=0.25$, 0.5, and 0.75) are presented. These structures are able to mimic the most important pair and multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to the relatively small size of the generated structures, they can be used to calculate the properties of random hcp alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In general, the first-principles results for the seven binary systems (Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr) show good agreement with both formation enthalpy and lattice parameters measurements from experiments. It is concluded that the SQSs presented in this work can be widely used to study the behavior of random hcp solutions.
We have studied the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) phases of Fe alloyed with 25 at. % of Ni at Earths core conditions using an ab initio local density approximation + dynamical mean-field theory (LDA+DMFT) approach. The alloys have been modeled by ordered crystal structures based on the bcc, fcc, and hcp unit cells with minimum possible cell size allowing for the proper composition. Our calculations demonstrate that the strength of electronic correlations on the Fe 3d shell is highly sensitive to the phase and local environment. In the bcc phase the 3d electrons at the Fe site with Fe only nearest neighbors remain rather strongly correlated even at extreme pressure-temperature conditions, with the local and uniform magnetic susceptibility exhibiting a Curie-Weiss-like temperature evolution and the quasi-particle lifetime {Gamma} featuring a non-Fermi-liquid temperature dependence. In contrast, for the corresponding Fe site in the hcp phase we predict a weakly-correlated Fermi-liquid state with a temperature-independent local susceptibility and a quadratic temperature dependence of {Gamma}. The iron sites with nickel atoms in the local environment exhibit behavior in the range between those two extreme cases, with the strength of correlations gradually increasing along the hcp-fcc-bcc sequence. Further, the inter-site magnetic interactions in the bcc and hcp phases are also strongly affected by the presence of Ni nearest neighbors. The sensitivity to the local environment is related to modifications of the Fe partial density of states due to mixing with Ni 3d-states.
We report the investigation of the structural stability of Co$_{(1-x)}$Ni$_x$Si monosilicides for $0<x<1$. As CoSi crystallizes in the FeSi-type structure (B20) and NiSi is stable in the MnP-type structure (B31), a complete set of samples has been synthesized and a systematic study of phase formation under different annealing conditions were carried out in order to understand the reason of such a structural transition when x goes from 0 to 1. This study has revealed a limit in the solubility of Ni in CoSi B20 structure of about 17.5 at.% and of Co in NiSi B31 phase of about 13 at.%. For $0.35<x<0.74$ both B20 and B31 phases are present in the sample at there respective limits of solubility. The temperature dependence of the magnetic susceptibility has also been measured revealing diamagnetic behaviors. Optimal structural parameters and phase stability of the solid solution have been investigated using self-consistent full-potential linearized augmented plane wave method (FP-LAPW) based on the density functional theory (DFT). This calculation well predicts the structural instability observed experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا