Do you want to publish a course? Click here

Thermodynamic properties of binary HCP solution phases from special quasirandom structures

140   0   0.0 ( 0 )
 Added by Dongwon Shin
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Three different special quasirandom structures (SQS) of the substitutional hcp $A_{1-x}B_x$ binary random solutions ($x=0.25$, 0.5, and 0.75) are presented. These structures are able to mimic the most important pair and multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to the relatively small size of the generated structures, they can be used to calculate the properties of random hcp alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In general, the first-principles results for the seven binary systems (Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr) show good agreement with both formation enthalpy and lattice parameters measurements from experiments. It is concluded that the SQSs presented in this work can be widely used to study the behavior of random hcp solutions.



rate research

Read More

In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc solid solution phase are generated at different compositions, $x_A=x_B=x_C=tfrac{1}{3}$ and $x_A=tfrac{1}{2}$, $x_B=x_C=tfrac{1}{4}$, whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions.
256 - D. Alfe` , G. D. Price , 2000
We present a new technique which allows the fully {em ab initio} calculation of the chemical potential of a substitutional impurity in a high-temperature crystal, including harmonic and anharmonic lattice vibrations. The technique uses the combination of thermodynamic integration and reference models developed recently for the {em ab initio} calculation of the free energy of liquids and anharmonic solids. We apply the technique to the case of the substitutional oxygen impurity in h.c.p. iron under Earths core conditions, which earlier static {em ab initio} calculations indicated to be thermodynamically very unstable. Our results show that entropic effects arising from the large vibrational amplitude of the oxygen impurity give a major reduction of the oxygen chemical potential, so that oxygen dissolved in h.c.p. iron may be stabilised at concentrations up a few mol % under core conditions.
86 - I. Lukyanchuk 1997
An Ising model with competing interaction is used to study the appearance of incommensurate phases in the basal plane of an hexagonal closed-packed structure. The calculated mean-field phase diagram reveals various 1q-incommensurate and lock-in phases. The results are applied to explain the basal-plane incommensurate phase in some compounds of the AABX_4 family, like K_2MoO_4, K_2WO_4, Rb_2WO4 and to describe the sequence of high-temperature phase transitions in other compounds of this family.
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase change the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.
We study the distribution of the minimum free energy (MFE) for the Turner model of pseudoknot free RNA secondary structures over ensembles of random RNA sequences. In particular, we are interested in those rare and intermediate events of unexpected low MFEs. Generalized ensemble Markov-chain Monte Carlo methods allow us to explore the rare-event tail of the MFE distribution down to probabilities like $10^{-70}$ and to study the relationship between the sequence entropy and structural properties for sequence ensembles with fixed MFEs. Entropic and structural properties of those ensembles are compared with natural RNA of the same reduced MFE (z-score).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا