No Arabic abstract
We show how the St.Venant compatibility relations for strain in three dimensions lead to twinning for the cubic to tetragonal transition in martensitic materials within a Ginzburg-Landau model in terms of the six components of the symmetric strain tensor. The compatibility constraints generate an anisotropic long-range interaction in the order parameter (deviatoric strain) components. In contrast to two dimensions, the free energy is characterized by a landscape of competing metastable states. We find a variety of textures, which result from the elastic frustration due to the effects of compatibility. Our results are also applicable to structural phase transitions in improper ferroelastics such as ferroelectrics and magnetoelastics, where strain acts as a secondary order parameter.
Modulated phases occur in numerous functional materials like giant ferroelectrics and magnetic shape memory alloys. To understand the origin of these phases, we review and generalize the concept of adaptive martensite. As a starting point, we investigate the coexistence of austenite, adaptive 14M phase and tetragonal martensite in Ni-Mn-Ga magnetic shape memory alloy epitaxial films. The modulated martensite can be constructed from nanotwinned variants of a tetragonal martensite phase. By combining the concept of adaptive martensite with branching of twin variants, we can explain key features of modulated phases from a microscopic view. This includes phase stability, the sequence of 6M-10M-NM intermartensitic transitions, and magnetocrystalline anisotropy.
Understanding lattice dynamics is crucial for effective thermal management in high-power electronic devices because phonons dominate thermal transport in most semiconductors. This study utilizes complementary inelastic X-ray and neutron scattering techniques and reports the temperature-dependent phonon dynamics of alpha-GaN, one of the most important third-generation power semiconductors. A prominent Matryoshka phonon dispersion is discovered with the scattering tools and confirmed by the first-principles calculations. Such Matryoshka twinning throughout the three-dimension reciprocal space is demonstrated to amplify the anharmonicity of the related phonon modes through creating abundant three-phonon scattering channels and cutting the phonon lifetime of affected modes by more than 50%. Such phonon topology effectively contributes to the reduction of the in-plane thermal transport, thus the anisotropic thermal conductivity of alpha-GaN. The results not only have significant implications for engineering the thermal performance and other phonon-related properties of alpha-GaN, but also offer valuable insights on the role of anomalous phonon topology in thermal transport of other technically important semiconductors.
Electronic states of a correlated material can be effectively modified by structural variations delivered from a single-crystal substrate. In this letter, we show that the CrN films grown on MgO (001) substrates have a (001) orientation, whereas the CrN films on {alpha}-Al2O3 (0001) substrates are oriented along (111) direction parallel to the surface normal. Transport properties of CrN films are remarkably different depending on crystallographic orientations. The critical thickness for the metal-insulator transition (MIT) in CrN 111 films is significantly larger than that of CrN 001 films. In contrast to CrN 001 films without apparent defects, scanning transmission electron microscopy results reveal that CrN 111 films exhibit strain-induced structural defects, e. g. the periodic horizontal twinning domains, resulting in an increased electron scattering facilitating an insulating state. Understanding the key parameters that determine the electronic properties of ultrathin conductive layers is highly desirable for future technological applications.
While electrons moving perpendicular to a magnetic field are confined to cyclotron orbits, they can move freely parallel to the field. This simple fact leads to complex current flow in clean, low carrier density semi-metals, such as long-ranged current jets forming along the magnetic field when currents pass through point-like constrictions. Occurring accidentally at imperfect current injection contacts, the phenomenon of current jetting plagues the research of longitudinal magneto-resistance which is particularly important in topological conductors. Here we demonstrate the controlled generation of tightly focused electron beams in a new class of micro-devices machined from crystals of the Dirac semi-metal Cd3As2. The current beams can be guided by tilting a magnetic field and their range tuned by the field strength. Finite element simulations quantitatively capture the voltage induced at faraway contacts when the beams are steered towards them, supporting the picture of controlled electron jets. These experiments demonstrate the first direct control over the highly nonlocal signal propagation unique to 3D semi-metals in the current jetting regime, and may lead to novel applications akin to electron optics in free space.
Topological metal/semimetals (TMs) have emerged as a new frontier in the field of quantum materials. A few two-dimensional (2D) boron sheets have been suggested as Dirac materials, however, to date TMs made of three-dimensional (3D) boron structures have not been found. Herein, by means of systematic first principles computations, we discovered that a rather stable 3D boron allotrope, namely 3D-alpha boron, is a nodal-chain semimetal. In the momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain. This 3D-alpha boron can be formed by stacking 2D wiggle alpha boron sheets, which are also nodal-ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 3D and 2D boron structures are related to the pi bonds between boron atoms, however, the bonding characteristics are different from those in the 2D and 3D carbon structures.