Do you want to publish a course? Click here

ASCA/ROSAT Observations of PKS 2316-423: Spectral Properties of a Low Luminosity Intermediate-type BL Lac Object

61   0   0.0 ( 0 )
 Added by Sui-Jian Xue
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of archival data from ROSAT and ASCA of a serendipitous source PKS 2316-423. According to its featureless non-thermal radio/optical continuum, the object has been assumed as a BL Lac candidate in the literature. It was evident variable over the multiple X-ray observations. Specially, a variable high-energy tail of the synchrotron radiation is revealed. X-ray spectral analysis provided further evidence of its synchrotron-nature broad-band spectrum with steep and down-curved shape in the range of 0.1-10 keV. Further SED analysis suggest that it is a very low luminosity ``intermediate or high energy peaked BL Lac object. Given the unusual low luminosity, the further studies of PKS 2316-423 might give clues on the evolution properties of BL Lacs.



rate research

Read More

494 - J.Siebert 1999
We present 6 ASCA and SAX observations of 4 intermediate BL Lac objects (1034+5727, 1055+5644, 1424+2401, 1741+1936). Their X-ray spectral properties and spectral energy distributions are compared to typical X-ray and radio selected BL Lacs. 1055+5644 varied by a factor of ten in flux without significant spectral changes.
The Infrared Space Observatory (ISO) observed the BL Lac object PKS 2155-304 16 times from 1996, May 7 to June 8, with both the ISOCAM camera and the ISOPHOT photometer, as part of a more general multiwavelength campaign. Two additional observations were performed on 1996, November 23 and 1997, May 15. This is the first time that there are simultaneous mid and far infrared data in a multiwavelength monitoring of a BL Lac object. We obtained four light curves at 4.0, 14.3, 60 and 90 microns, and a broad-band filter spectrum from 2.8 to 170 micron. No variability was detected in the infrared, although the source was varying at shorter wavelengths. The IR spectrum can be fitted by a single power law with an energy spectral index alfa = 0.40 +/- 0.06 and it can be explained as due to synchrotron emission only, with no noticeable contributions from thermal sources. Using the simultaneous data, we constructed the SED of PKS 2155-304.
PKS 0548-322 (z=0.069) is a ``high-frequency-peaked BL Lac object and a candidate very high energy (VHE, E>100 GeV) gamma-ray emitter, due to its high X-ray and radio flux. Observations at the VHE band provide insights into the origin of very energetic particles present in this source and the radiation processes at work. We report observations made between October 2004 and January 2008 with the H.E.S.S. array, a four imaging atmospheric-Cherenkov telescopes. Contemporaneous UV and X-ray observations with the Swift satellite in November 2006 are also reported. PKS 0548-322 is detected for the first time in the VHE band with H.E.S.S. We measure an excess of 216 gamma-rays corresponding to a significance of 5.6 standard deviations. The photon spectrum of the source is described by a power-law, with a photon index of Gamma=2.86 +/- 0.34 (stat) +/- 0.10 (sys). The integral flux above 200 GeV is 1.3 % of the flux of the Crab Nebula, and is consistent with being constant in time. Contemporaneous Swift/XRT observations reveal an X-ray flux between 2 and 10 keV of F_{2-10 keV}=2.3 +/- 0.2 x 10^{-11} erg.cm^{-2}. s^{-1}, an intermediate intensity state with respect to previous observations. The spectral energy distribution can be reproduced using a simple one-zone synchrotron self Compton model, with parameters similar those observed for other sources of this type.
152 - E. Aliu , A. Archer , T. Aune 2014
We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560,GeV, is well described by a power law with a spectral index of $4.33 pm 0.09$. The time-averaged integral flux above $200,$GeV measured for this period was $(1.69 pm 0.06) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$, corresponding to 6.9% of the Crab Nebula flux. We also present the combined $gamma$-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100~MeV to 560~GeV. The data are well fit by a power law with an exponential cutoff at $rm {101.9 pm 3.2 , mathrm{GeV}} $. The origin of the cutoff could be intrinsic to PG~1553+113 or be due to the $gamma$-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of $rm z egthinspace > egthinspace 0.395$ based on optical/UV observations of PG~1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of $z egthinspace leq egthinspace 0.62$. A strongly-elevated mean flux of $(2.50 pm 0.14) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as $(4.44 pm 0.71) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a $chi^2$ probability for a steady flux of 0.03%.
On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event icnu, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar txs~(3FGL J0509.4+0541), which was in an elevated gamma-ray emission state as measured by the emph{Fermi} satellite. VERITAS observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E $>$ 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+056 was detected by VERITAS with a significance of 5.8 standard deviations ($sigma$) in the full 35-hour data set. The average photon flux of the source during this period was $(8.9 pm 1.6) times 10^{-12} ; mathrm{cm}^{-2} , mathrm{s}^{-1}$, or 1.6% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of $4.8 pm 1.3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا