Do you want to publish a course? Click here

Precision Measurement of Cosmic-Ray Antiproton Spectrum

183   0   0.0 ( 0 )
 Added by Shuji Orito
 Publication date 1999
  fields Physics
and research's language is English
 Authors S. Orito




Ask ChatGPT about the research

The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.18 to 3.56 GeV, based on 458 antiprotons collected by BESS in recent solar-minimum period. We have detected for the first time a distinctive peak at 2 GeV of antiprotons originating from cosmic-ray interactions with the interstellar gas. The peak spectrum is reproduced by theoretical calculations, implying that the propagation models are basically correct and that different cosmic-ray species undergo a universal propagation. Future BESS flights toward the solar maximum will help us to study the solar modulation and the propagation in detail and to search for primary antiproton components.



rate research

Read More

183 - K. Abe , H. Fuke , S. Haino 2008
The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to probe the effect of charge sign dependent drift in the solar modulation.
Cosmic-ray proton and antiproton spectra were measured at mountain altitude, 2770 m above sea level. We observed more than 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy range between 0.25 and 3.3 GeV. The zenith-angle dependence of proton flux was obtained. The observed spectra were compared with theoretical predictions.
118 - K. Abe , H. Fuke , S. Haino 2011
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been investigated by comparing measured and calculated antiproton spectra. BESS-Polar II data show no evidence of primary antiprotons from evaporation of primordial black holes.
231 - T. Sanuki , M. Fujikawa , K. Abe 2003
Measurement of cosmic-ray proton, antiproton and muon spectra was carried out at mountain altitude. We observed 2 x 10^5 protons and 10^2 antiprotons in a kinetic energy region of 0.25 -- 3.3 GeV. Zenith-angle dependence of proton fluxes was obtained. Atmospheric muon spectra were measured simultaneously. The observed antiproton spectrum showed some deviation from theoretical predictions particularly in a low energy region.
112 - C. Smorra , K. Blaum , K. Franke 2014
The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz, we demonstrated recently the first application of the so called double Penning-trap method with a single proton. This is a major step towards a measurement of the proton magnetic moment with ppb precision. To apply this method to a single trapped antiproton our collaboration is currently setting up a companion experiment at the antiproton decelerator of CERN. This effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A comparison of both magnetic moment values will provide a stringent test of CPT invariance with baryons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا