No Arabic abstract
The gamma-ray blazar 3C 279 was monitored on a nearly daily basis with IUE, ROSAT and EGRET for three weeks between December 1992 and January 1993. During this period, the blazar was at a historical minimum at all wavelengths. Here we present the UV data obtained during the above multiwavelength campaign. A maximum UV variation of ~50% is detected, while during the same period the X-ray flux varied by no more than 13%. At the lowest UV flux level the average spectrum in the 1230-2700 A interval is unusually flat for this object (<alpha_UV>~1). The flattening could represent the lowest energy tail of the inverse Compton component responsible for the X-ray emission, or could be due to the presence of a thermal component at ~20000 K possibly associated with an accretion disk. The presence of an accretion disk in this blazar object, likely observable only in very low states and otherwise hidden by the beamed, variable synchrotron component, would be consistent with the scenario in which the seed photons for the inverse Compton mechanism producing the gamma-rays are external to the relativistic jet. We further discuss the long term correlation of the UV flux with the X-ray and gamma-ray fluxes obtained at various epochs. All UV archival data are included in the analysis. Both the X- and gamma-ray fluxes are generally well correlated with the UV flux, approximately with square root and quadratic dependences, respectively.
Of the blazars detected by EGRET in GeV gamma rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.
We present the results of extensive multi-waveband monitoring of the blazar 3C~279 between 1996 and 2007 at X-ray energies (2-10 keV), optical R band, and 14.5 GHz, as well as imaging with the Very Long Baseline Array (VLBA) at 43 GHz. In all bands the power spectral density corresponds to red noise that can be fit by a single power law over the sampled time scales. Variations in flux at all three wavebands are significantly correlated. The time delay between high and low frequency bands changes substantially on time scales of years. A major multi-frequency flare in 2001 coincided with a swing of the jet toward a more southerly direction, and in general the X-ray flux is modulated by changes in the position angle of the jet near the core. The flux density in the core at 43 GHz--increases in which indicate the appearance of new superluminal knots--is significantly correlated with the X-ray flux. We decompose the X-ray and optical light curves into individual flares, finding that X-ray leads optical variations (XO) in 6 flares, the reverse occurs in 3 flares (OX), and there is essentially zero lag in 4 flares. Upon comparing theoretical expectations with the data, we conclude that (1) XO flares can be explained by gradual acceleration of radiating electrons to the highest energies; (2) OX flares can result from either light-travel delays of the seed photons (synchrotron self-Compton scattering) or gradients in maximum electron energy behind shock fronts; and (3) events with similar X-ray and optical radiative energy output originate well upstream of the 43 GHz core, while those in which the optical radiative output dominates occur at or downstream of the core.
We present an update of 3C 273s database hosted by the ISDC, completed with data from radio to gamma-ray observations over the last 10 years. We use this large data set to study the multiwavelength properties of this quasar,especially focussing on its variability behaviour. We study the amplitude of the variations and the maximum variability time scales across the broad-band spectrum and correlate the light curves in different bands, specifically with the X-rays, to search for possible connections between the emission at different energies. 3C 273 shows variability at all frequencies, with amplitudes and time scales strongly depending on the energy and being the signatures of the different emission mechanisms. The variability properties of the X-ray band imply the presence of either two separate components (possibly a Seyfert-like and a blazar-like) or at least two parameters with distinct timing properties to account for the X-ray emission below and above ~20 keV. The dominant hard X-ray emission is most probably not due to electrons accelerated by the shock waves in the jet as their variability does not correlate with the flaring millimeter emission, but seems to be associated to long-timescale variations in the optical. This optical component is consistent with being optically thin synchrotron radiation from the base of the jet and the hard X-rays would be produced through inverse Compton processes (SSC and/or EC) by the same electron population. We show evidence that this synchrotron component extends from the optical to the near-infrared domain, where it is blended by emission of heated dust that we find to be located within about 1 light-year from the ultraviolet source.
We report first results of a multifrequency campaign from radio to hard X-ray energies of the prominent gamma-ray blazar 3C 279, which was organised around an INTEGRAL ToO observation in January 2006, and triggered on its optical state. The variable blazar was observed at an intermediate optical state, and a well-covered multifrequency spectrum from radio to hard X-ray energies could be derived. The SED shows the typical two-hump shape, the signature of non-thermal synchrotron and inverse-Compton (IC) emission from a relativistic jet. By the significant exposure times of INTEGRAL and Chandra, the IC spectrum (0.3 - 100 keV) was most accurately measured, showing - for the first time - a possible bending. A comparison of this 2006 SED to the one observed in 2003, also centered on an INTEGRAL observation, during an optical low-state, reveals the surprising fact that - despite a significant change at the high-energy synchrotron emission (near-IR/optical/UV) - the rest of the SED remains unchanged. In particular, the low-energy IC emission (X- and hard X-ray energies) remains the same as in 2003, proving that the two emission components do not vary simultaneously, and provides strong constraints on the modelling of the overall emission of 3C 279.
Ever since the discovery by the Fermi mission that active galactic nuclei (AGN) produce copious amounts of high-energy emission, its origin has remained elusive. Using high-frequency radio interferometry (VLBI) polarization imaging, we could probe the magnetic field topology of the compact high-energy emission regions in blazars. A case study for the blazar 3C 279 reveals the presence of multiple gamma-ray emission regions. Pass 8 Fermi-Large Area Telescope (LAT) data are used to investigate the flux variations in the GeV regime; six gamma-ray flares were observed in the source during November 2013 to August 2014. We use the 43 GHz VLBI data to study the morphological changes in the jet. Ejection of a new component (NC2) during the first three gamma-ray flares suggests the VLBI core as the possible site of the high-energy emission. A delay between the last three flares and the ejection of a new component (NC3) indicates that high-energy emission in this case is located upstream of the 43 GHz core (closer to the black hole).