Do you want to publish a course? Click here

High-resolution polarization imaging of the Fermi blazar 3C 279

93   0   0.0 ( 0 )
 Added by Bindu Rani Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ever since the discovery by the Fermi mission that active galactic nuclei (AGN) produce copious amounts of high-energy emission, its origin has remained elusive. Using high-frequency radio interferometry (VLBI) polarization imaging, we could probe the magnetic field topology of the compact high-energy emission regions in blazars. A case study for the blazar 3C 279 reveals the presence of multiple gamma-ray emission regions. Pass 8 Fermi-Large Area Telescope (LAT) data are used to investigate the flux variations in the GeV regime; six gamma-ray flares were observed in the source during November 2013 to August 2014. We use the 43 GHz VLBI data to study the morphological changes in the jet. Ejection of a new component (NC2) during the first three gamma-ray flares suggests the VLBI core as the possible site of the high-energy emission. A delay between the last three flares and the ejection of a new component (NC3) indicates that high-energy emission in this case is located upstream of the 43 GHz core (closer to the black hole).



rate research

Read More

The long-term optical, X-ray and $gamma$-ray data of blazar 3C 279 have been compiled from $Swift$-XRT, $RXTE$ PCA, $Fermi$-LAT, SMARTS and literature. The source exhibits strong variability on long time scales. Since 1980s to now, the optical $R$ band light curve spans above 32 yr, and a possible 5.6-yr-long quasi-periodic variation component has been found in it. The optical spectral behavior has been investigated. In the optical band, the mean spectral index is -1.71. The source exhibits an obvious special spectral behavior. In the low state, the source shows a clear bluer-when-brighter behavior in a sense that the optical spectrum turns harder (flatter) when the brightness increases. While in the high state, the optical spectrum is stable, that means the source spectral index does not vary with the brightness. The correlation analysis has been performed among optical, X-ray and $gamma$-ray energy bands. The result indicates that the variations of $gamma$-ray and X-ray bands are well correlated without time delay on the time scale of days, and their variations exhibit weak correlations with those of optical band. The variations, especial outbursts, are simultaneous, but the magnitude of variations is disproportionate. The detailed analysis reveals that the main outbursts exhibit strong correlations in different $gamma$-ray, X-ray and optical bands.
Quasar 3C 279 is known to exhibit episodes of optical polarization angle rotation. We present new, well-sampled optical polarization data for 3C 279 and introduce a method to distinguish between random and deterministic electric vector position angle (EVPA) variations. We observe EVPA rotations in both directions with different amplitudes and find that the EVPA variation shows characteristics of both random and deterministic cases. Our analysis indicates that the EVPA variation is likely dominated by a random process in the low brightness state of the jet and by a deterministic process in the flaring state.
The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
127 - D. C. Homan 2009
We report the results of parsec-scale, multi-frequency VLBA observations of the core region of 3C 279 in Stokes I, linear polarization, and circular polarization. These full polarization spectra are modeled by radiative transfer simulations to constrain the magnetic field and particle properties of the parsec-scale jet in 3C 279. The polarization properties of the core region, including the amount of linear polarization, the amount and sign of Faraday rotation, and the amount and sign of circular polarization can be explained by a consistent physical picture. The base of the jet is modeled as an inhomogeneous Blandford-Konigl style conical jet dominated by a vector-ordered poloidal magnetic field along the jet axis, and we estimate its net magnetic flux. This poloidal field is responsible for the linear and circular polarization from this inhomogeneous component. Farther down the jet the magnetic field in two homogeneous features is dominated by local shocks and a smaller fraction of vector-ordered poloidal field remains along the jet axis. In this picture, we find the jet to be kinetically dominated by protons with the radiating particles being dominated by electrons at an approximate fraction of >~ 75%. Based on the amounts of Faraday conversion deduced for the homogeneous components, we find a plausible range for the lower cutoff in the relativistic particle energy spectrum to be 5 <~ gamma_l <~ 35. The physical picture described here is not unique if the observed Faraday rotation and depolarization occur in screens external to the jet; however, we find the joint explanation of linear and circular polarization observations from a single set of magnetic fields and particle properties internal to the jet to be compelling evidence for this picture. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا