Do you want to publish a course? Click here

Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-Poor Globular Cluster M4

136   0   0.0 ( 0 )
 Added by Inese I. Ivans
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a chemical composition analysis of 36 giants in the nearby mildy metal-poor (<[Fe/H]> = -1.18) CN-bimodal globular cluster M4. Confronted with a cluster that has large and variable interstellar extinction across the cluster face, we combined traditional spectroscopic abundance methods with modifications to line-depth ratio techniques to determine the atmospheric parameters of our stars. We derive a total-to-selective extinction ratio of 3.4 and an average <E(B-V)> reddening of 0.33 which is significantly lower than that estimated by using the dust maps made by Schlegel et al. (1998). Abundance ratios for Sc, Ti, V, Ni, & Eu are typical of halo field and cluster stars. However, Si, Al, Ba, & La are overabundant with respect to what is seen in other globular clusters of similar metallicity. Superimposed on the primordial abundance distribution is evidence for the existence of proton-capture synthesis. We recover some of the C, N, O, Na, Mg, & Al abundance swings and correlations found in other more metal-poor globular clusters but the range of variation is muted. The Al enhancements appear to be from the destruction of 25,26Mg, not 24Mg. The C+N+O abundance sum is constant to within the observational errors, and agrees with the C+N+O total that might be expected for M4 stars at birth. The M4 AGB stars have C,N,O abundances that show less evidence for proton- capture nucleosynthesis than is found in the less-evolved stars of the RGB. Deeply-mixed stars of the RGB, subsequent to the helium core flash, might take up residence on the blue end of the HB, and thus fail to evolve back to the AGB but reasons for skepticism concerning this scenario are noted.



rate research

Read More

220 - Inese I. Ivans 2001
We present a chemical composition analysis of 36 giant stars in the mildly metal-poor globular cluster M5 (NGC 5904). The analysis makes use of high resolution data acquired at the Keck I telescope as well as a re-analysis of high resolution spectra acquired for an earlier study at Lick Observatory. We employed two analysis techniques: one, adopting standard spectroscopic constraints, and two, adopting an analysis consistent with the non-LTE precepts as recently described by Thevenin & Idiart. The abundance ratios we derive for magnesium, silicon, calcium, scandium, titanium, vanadium, nickel, barium and europium in M5 show no significant abundance variations and the ratios are comparable to those of halo field stars. However, large variations are seen in the abundances of oxygen, sodium and aluminum, the elements that are sensitive to proton-capture nucleosynthesis. In comparing the abundances of M5 and M4 (NGC 6121), another mildly metal-poor globular cluster, we find that silicon, aluminum, barium and lanthanum are overabundant in M4 with respect to what is seen in M5, confirming and expanding the results of previous studies. In comparing the abundances between these two clusters and others having comparable metallicities, we find that the anti-correlations observed in M5 are similar to those found in more metal-poor clusters, M3, M10 and M13, whereas the behavior in M4 is more like that of the more metal-rich globular cluster M71. We conclude that among stars in Galactic globular clusters, there is no definitive ``single value of [el/Fe] at a given [Fe/H] for at least some alpha-capture, odd-Z and slow neutron-capture process elements, in this case, silicon, aluminum, barium and lanthanum.
411 - Inese I. Ivans 2001
We present a chemical composition analysis of 36 giant stars in mildly metal-poor globular cluster M5. In comparing the M5 results to those obtained in M4, a cluster previously considered to be a ``twin in age, metallicity and chemical composition, we find large star-to-star variations in the abundances of elements sensitive to proton-capture nucleosynthesis, similar [Fe/H] values, but factor of two differences in some alpha-capture, odd-Z and slow neutron-capture process elements. Among stars in globular clusters, apparently there are no definitive ``single values of [el/Fe] at a given [Fe/H] for many important elements.
A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo), in order to check whether the K abundances are uniform within a cluster and to investigate the behavior of [K/Fe] ratio at the relevant metallicity range of -2.5 <[Fe/H] < -1. We confirmed that [K/H] (as well as [Fe/H]) is almost homogeneous within each cluster to a precision of < ~0.1 dex, though dubiously large deviations are exceptionally seen for two peculiar stars showing signs of considerably increased turbulence in the upper atmosphere. The resulting [K/Fe] ratios are mildly supersolar by a few tenths of dex for three clusters, tending to gradually increase from ~+0.1-0.2 at [Fe/H] ~-1 to ~+0.3 at [Fe/H] ~ -2.5. This result connects reasonably well with the [K/Fe] trend of disk stars (-1 < [Fe/H]) and that of extremely metal-poor stars (-4 <[Fe/H] < -2.5). That is, [K/Fe] appears to continue a gradual increase from [Fe/H]~0 toward a lower metallicity regime down to [Fe/H]~-3, where a broad maximum of [K/Fe]~+0.3-0.4 is attained, possibly followed by a slight downturn at [Fe/H]<~-3.
We present a spectral analysis of the UV-bright star Y453 in M4. Model fits to the stars optical spectrum yield T_eff ~ 56,000 K. Fits to the stars FUV spectrum, obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope, reveal it to be considerably hotter, with T_eff ~ 72,000 K. We adopt T_eff = 72,000 +/- 2000 K and log g = 5.7 +/- 0.2 as our best-fit parameters. Scaling the model spectrum to match the stars optical and near-infrared magnitudes, we derive a mass M_* = 0.53 +/- 0.24 M_sun and luminosity log L/L_sun = 2.84 +/- 0.05, consistent with the values expected of an evolved star in a globular cluster. Comparing the star with post-horizontal branch evolutionary tracks, we conclude that it most likely evolved from the blue horizontal branch, departing the AGB before third dredge-up. It should thus exhibit the abundance pattern (O-poor and Na-rich) characteristic of the second-generation (SG) stars in M4. We derive the stars photospheric abundances of He, C, N, O, Si, S, Ti, Cr, Fe, and Ni. CNO abundances are roughly 0.25 dex greater than those of the clusters SG stars, while the Si and S abundances agree match the cluster values. Abundances of the iron-peak elements (except for iron itself) are enhanced by 1 to 3 dex. Rather than revealing the stars origin and evolution, this pattern reflects the combined effects of diffusive and mechanical processes in the stellar atmosphere.
The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H]~-1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y , Zr, Ba, La, and Eu.} High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP~1 were obtained with the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of FeI and FeII. We confirm a mean metallicity of [Fe/H] = -1.06~0.10, by adding the two stars that were previously analyzed in HP~1. The alpha-elements O and Mg are enhanced by about +0.3<[O,Mg/Fe]<+0.5 dex, Si is moderately enhanced with +0.15<[Si/Fe]<+0.35dex, while Ca and Ti show lower values of -0.04<[Ca,Ti/Fe]<+0.28dex. The r-element Eu is also enhanced with [Eu/Fe]~+0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20<[La/Fe]<+0.43dex and 0.0<[Ba/Fe]<+0.75~dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا