No Arabic abstract
Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs indicate that oxygen abundances are generally higher than those previously determined. The difference increases with decreasing metallicity and reaches delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0. Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of the two stars found by Israelian et al. (1998) to have the highest [O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz LTE models the values of the stellar parameters, as well as abundances of Na, Ni, and the traditional alpha-elements, independent of the calibration of color vs $T_{eff}$ scales. We determined oxygen abundances from spectral synthesis of the stronger line (6300 A) of the [O I] doublet. The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent with those found earlier among halo field and globular cluster giants. We obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37 1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted [O/Fe] value may in reality be an upper limit. Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios derived from [O I] and the OH feature, and the origin of this difference remains unclear. Until the matter is clarified, we suggest it is premature to conclude that the ab initio oxygen abundances of old, metal-poor stars need to be revised drastically upward.
Context: Recent works with improved model atmospheres, line formation, atomic and molecular data, and detailed treatment of blends, have resulted in a significant downward revision of the solar oxygen abundance. Aims: Considering the importance of the Sun as an astrophysical standard and the current conflict of standard solar models using the new solar abundances with helioseismological observations we have performed a new study of the solar oxygen abundance based on the forbidden [OI] line at 5577.34 A, not previously considered. Methods: High-resolution (R > 500 000), high signal-to-noise (S/N > 1000) solar spectra of the [O I] 5577.34 A line have been analyzed employing both three-dimensional (3D) and a variety of 1D (spatially and temporally averaged 3D, Holweger & Muller, MARCS and Kurucz models with and without convective overshooting) model atmospheres. Results: The oxygen abundance obtained from the [OI] 5577.3 A forbidden line is almost insensitive to the input model atmosphere and has a mean value of A(O) = 8.71 +/- 0.02 (sigma from using the different model atmospheres). The total error (0.07 dex) is dominated by uncertainties in the log gf value (0.03 dex), apparent line variation (0.04 dex) and uncertainties in the continuum and line positions (0.05 dex). Conclusions: The here derived oxygen abundance is close to the 3D-based estimates from the two other [OI] lines at 6300 and 6363 A, the permitted OI lines and vibrational and rotational OH transitions in the infrared. Our study thus supports a low solar oxygen abundance (A(O) ~ 8.7), independent of the adopted model atmosphere.
The abundance of oxygen was determined for selected very metal-poor G-K stars (six giants and one turn-off star) based on the high S/N and high-resolution spectra observed with Keck HIRES in the red through near-IR region comprising the permitted O I lines (7771-5, 8446) along with the [O I] forbidden line at 6363 A. It turned out that both the abundances from the permitted line features, O I 7771-5 and O I 8446, agree quite well with each other, while the forbidden line yields somewhat discrepant and divergent abundances with a tendency of being underestimated on the average. The former (7773/8446) solution, which we believe to be more reliable, gives a fairly tight [O/Fe] vs. [Fe/H] relation such that increasing steadily from [O/Fe] = 0.6 (at [Fe/H] = -1.5) to [O/Fe] = 1.0 (at [Fe/H] = -3.0), in reasonable consistency with the trend recently reported based on the analysis of the UV OH lines. We would suspect that some kind of weakening mechanism may occasionally act on the formation of [O I] forbidden lines in metal-poor stars. Therefore, [O I] lines may not be so a reliable abundance indicator as has been generally believed.
This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant proto-galaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Delta(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex up to 1.4 dex. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Delta(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness. An inverse correlation of Delta(O+2) with nebular density is also seen. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].
We investigate the debated sulphur discrepancy found among metal-poor stars of the Galactic halo with [Fe/H] < -2. This discrepancy stems in part from the use of two different sets of sulphur lines, the very weak triplet at 8694-95 A and the stronger triplet lines at 9212 - 9237 A. For three representative cases of metal-poor dwarf, turnoff and subgiant stars, we argue that the abundances from the 8694-95 lines have been overestimated which has led to a continually rising trend of [S/Fe] as metallicity decreases. Given that the near-IR region is subject to CCD fringing, these weak lines become excessively difficult to measure accurately in the metallicity regime of [Fe/H] < -2. Based on homogeneously determined spectroscopic stellar parameters, we also present updated [S/Fe] ratios from the 9212-9237 lines which suggest a plateau-like behaviour similar to that seen for other alpha elements.