No Arabic abstract
Context: Recent works with improved model atmospheres, line formation, atomic and molecular data, and detailed treatment of blends, have resulted in a significant downward revision of the solar oxygen abundance. Aims: Considering the importance of the Sun as an astrophysical standard and the current conflict of standard solar models using the new solar abundances with helioseismological observations we have performed a new study of the solar oxygen abundance based on the forbidden [OI] line at 5577.34 A, not previously considered. Methods: High-resolution (R > 500 000), high signal-to-noise (S/N > 1000) solar spectra of the [O I] 5577.34 A line have been analyzed employing both three-dimensional (3D) and a variety of 1D (spatially and temporally averaged 3D, Holweger & Muller, MARCS and Kurucz models with and without convective overshooting) model atmospheres. Results: The oxygen abundance obtained from the [OI] 5577.3 A forbidden line is almost insensitive to the input model atmosphere and has a mean value of A(O) = 8.71 +/- 0.02 (sigma from using the different model atmospheres). The total error (0.07 dex) is dominated by uncertainties in the log gf value (0.03 dex), apparent line variation (0.04 dex) and uncertainties in the continuum and line positions (0.05 dex). Conclusions: The here derived oxygen abundance is close to the 3D-based estimates from the two other [OI] lines at 6300 and 6363 A, the permitted OI lines and vibrational and rotational OH transitions in the infrared. Our study thus supports a low solar oxygen abundance (A(O) ~ 8.7), independent of the adopted model atmosphere.
The abundance of oxygen was determined for selected very metal-poor G-K stars (six giants and one turn-off star) based on the high S/N and high-resolution spectra observed with Keck HIRES in the red through near-IR region comprising the permitted O I lines (7771-5, 8446) along with the [O I] forbidden line at 6363 A. It turned out that both the abundances from the permitted line features, O I 7771-5 and O I 8446, agree quite well with each other, while the forbidden line yields somewhat discrepant and divergent abundances with a tendency of being underestimated on the average. The former (7773/8446) solution, which we believe to be more reliable, gives a fairly tight [O/Fe] vs. [Fe/H] relation such that increasing steadily from [O/Fe] = 0.6 (at [Fe/H] = -1.5) to [O/Fe] = 1.0 (at [Fe/H] = -3.0), in reasonable consistency with the trend recently reported based on the analysis of the UV OH lines. We would suspect that some kind of weakening mechanism may occasionally act on the formation of [O I] forbidden lines in metal-poor stars. Therefore, [O I] lines may not be so a reliable abundance indicator as has been generally believed.
Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs indicate that oxygen abundances are generally higher than those previously determined. The difference increases with decreasing metallicity and reaches delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0. Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of the two stars found by Israelian et al. (1998) to have the highest [O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz LTE models the values of the stellar parameters, as well as abundances of Na, Ni, and the traditional alpha-elements, independent of the calibration of color vs $T_{eff}$ scales. We determined oxygen abundances from spectral synthesis of the stronger line (6300 A) of the [O I] doublet. The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent with those found earlier among halo field and globular cluster giants. We obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37 1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted [O/Fe] value may in reality be an upper limit. Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios derived from [O I] and the OH feature, and the origin of this difference remains unclear. Until the matter is clarified, we suggest it is premature to conclude that the ab initio oxygen abundances of old, metal-poor stars need to be revised drastically upward.
Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform Non-Local Thermodynamic Equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R = 700 000, spatially-resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 +/- 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model-dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 +/- 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 +/- 0.03 dex.
In the Sun, the two forbidden [OI] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances. aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars. method: We make use of high-resolution, high signal-to-noise ratio spectra of four dwarf to turn-off stars, five giant stars, and one sub-giant star observed with THEMIS, HARPS, and UVES to investigate the coherence of the two lines. results: The two lines provide oxygen abundances that are consistent, within observational errors, in all the giant stars examined by us. On the other hand, for the two dwarf stars for which a measurement was possible, for Procyon, and for the sub-giant star Capella, the 636 nm line provides systematically higher oxygen abundances, as already seen for the Sun. conclusions: The only two possible reasons for the discrepancy are a serious error in the oscillator strength of the NiI line blending the 630 nm line or the presence of an unknown blend in the 636 nm line, which makes the feature stronger. The CN lines blending the 636 nm line cannot be responsible for the discrepancy. The CaI autoionisation line, on the red wing of which the 636 nm line is formed, is not well modelled by our synthetic spectra. However, a better reproduction of this line would result in even higher abundances from the 636 nm, thus increasing the discrepancy.
The solar photospheric oxygen abundance has been determined from [OI], OI, OH vibration-rotation and OH pure rotation lines by means of a realistic time-dependent, 3D, hydrodynamical model of the solar atmosphere. In the case of the OI lines, 3D non-LTE calculations have been performed, revealing significant departures from LTE as a result of photon losses in the lines. We derive a solar oxygen abundance of log O = 8.66 +/- 0.05. All oxygen diagnostics yield highly consistent abundances, in sharp contrast with the results of classical 1D model atmospheres. This low value is in good agreement with measurements of the local interstellar medium and nearby B stars. This low abundance is also supported by the excellent correspondence between lines of very different line formation sensitivities, and between the observed and predicted line shapes and center-to-limb variations. Together with the corresponding down-ward revisions of the solar carbon, nitrogen and neon abundances, the resulting significant decrease in solar metal mass fraction to Z = 0.0126 can, however, potentially spoil the impressive agreement between predicted and observed sound speed in the solar interior determined from helioseismology.