No Arabic abstract
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which ``sticky chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become ``unstuck much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a Fluctuation-Dissipation Theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.
In this paper, an implicit nonsymplectic exact energy-preserving integrator is specifically designed for a ten-dimensional phase-space conservative Hamiltonian system with five degrees of freedom. It is based on a suitable discretization-averaging of the Hamiltonian gradient, with a second-order accuracy to numerical solutions. A one-dimensional disordered discrete nonlinear Schr{o}dinger equation and a post-Newtonian Hamiltonian system of spinning compact binaries are taken as our two examples. We demonstrate numerically that the proposed algorithm exhibits good long-term performance in the preservation of energy, if roundoff errors are neglected. This result is independent of time steps, initial orbital eccentricities, and regular and chaotic orbital dynamical behavior. In particular, the application of appropriately large time steps to the new algorithm is helpful in reducing time-consuming and roundoff errors. This new method, combined with fast Lyapunov indicators, is well suited related to chaos in the two example problems. It is found that chaos in the former system is mainly responsible for one of the parameters. In the latter problem, a combination of small initial separations and high initial eccentricities can easily induce chaos.
In two-dimensional (2D) electron systems, an off-resonant high-frequency circularly polarized electromagnetic field can induce the quasi-stationary bound electron states of repulsive scatterers. As a consequence, the resonant scattering of conduction electrons through the quasi-stationary states and the capture of conduction electrons by the states appear. The present theory describes the transport properties of 2D electron gas irradiated by a circularly polarized light, which are modified by these processes. Particularly, it is demonstrated that irradiation of 2D electron systems by the off-resonant field results in the quantum correction to conductivity of resonant kind.
We have fabricated and studied a ballistic one-dimensional p-type quantum wire using an undoped AlGaAs/GaAs heterostructure. The absence of modulation doping eliminates remote ionized impurity scattering and allows high mobilities to be achieved over a wide range of hole densities, and in particular, at very low densities where carrier-carrier interactions are strongest. The device exhibits clear quantized conductance plateaus with highly stable gate characteristics. These devices provide opportunities for studying spin-orbit coupling and interaction effects in mesoscopic hole systems in the strong interaction regime where rs > 10.
The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a `checkerboard charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. By considering the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the $hat x$ and $hat y$ directions, we conclude that phase separation still occurs.
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional two-fold rotation symmetry is mediated by an emergent stable two-dimensional Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and two-fold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair-creation/pair-annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D $Z_{2}$ topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe/CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase since the quantum well, lacking inversion symmetry intrinsically, has two-fold rotation about the growth direction. Namely, the HgTe/CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.