No Arabic abstract
We first review the current knowledge of Hipparcos systematic and random errors, in particular small-scale correlations. Then, assuming Gaussian parallax errors and using examples from the recent Hipparcos literature, we show how random errors may be misinterpreted as systematic errors, or transformed into systematic errors. Finally we summarise how to get unbiased estimates of absolute magnitudes and distances, using either Bayesian or non-parametrical methods. These methods may be applied to get either mean quantities or individual estimates. In particular, we underline the notion of astrometry-based luminosity, which avoids the truncation biases and allows a full use of Hipparcos samples.
Y dwarfs provide a unique opportunity to study free-floating objects with masses $<$30 M$_{Jup}$ and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step towards characterizing their absolute physical properties. Using Spitzer/IRAC [4.5] images taken over baselines of $sim$2-7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of 6 new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04$-$014351.0, based on Keck/NIRSPEC $J$-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties.
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using this maser transition to obtain accurate distances to their host regions. Eight strong masers were observed during five epochs of VLBI observations with the European VLBI Network between 2006 June, and 2008 March. We report trigonometric parallaxes for five star-forming regions, with accuracies as good as $sim22 mathrm{mu}$as. Distances to these sources are $2.57^{+0.34}_{-0.27}$ kpc for ON 1, $0.776^{+0.104}_{-0.083}$ kpc for L 1206, $0.929^{+0.034}_{-0.033}$ kpc for L 1287, $2.38^{+0.13}_{-0.12}$ kpc for NGC 281-W, and $1.59^{+0.07}_{-0.06}$ kpc for S 255. The distances and proper motions yield the full space motions of the star-forming regions hosting the masers, and we find that these regions lag circular rotation on average by $sim$17 km s$^{-1}$, a value comparable to those found recently by similar studies.
The theoretical prediction that trigonometric parallaxes suffer from a statistical effect, has become topical again now that the results of the Hipparcos satellite have become available. This statistical effect, the so-called Lutz-Kelker bias, causes measured parallaxes to be too large. This has the implication that inferred distances, and hence inferred luminosities are too small. Published analytic calculations of the Lutz-Kelker bias indicate that the inferred luminosity of an object is, on average, 30% too small when the error in the parallax is only 17.5%. Yet, this bias has never been determined empirically. In this paper we investigate whether there is such a bias by comparing the best Hipparcos parallaxes which ground-based measurements. We find that there is indeed a large bias affecting parallaxes, with an average and scatter comparable to predictions. We propose a simple method to correct for the LK bias, and apply it successfully to a sub-sample of our stars. We then analyze the sample of 26 `best Cepheids used by Feast & Catchpole (1997) to derive the zero-point of the fundamental mode pulsators and leads to a distance modulus to the Large Magellanic Cloud - based on Cepheid parallaxes- of 18.56 +/- 0.08, consistent with previous estimates.
We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears clearly present. By selecting those objects that are not affected by bias, we find a mean absolute magnitude of Mv~5.7, a downward revision from 5.9 mag. listed in Schmidt-Kaler (1982). Some objects have absolute magnitudes far brighter than Mv~5.7, and it is suggested that these objects (~20% of the total sample) are K0IV stars which may have been mis-classified as a K0V star. The presence of the Malmquist bias in even this high quality sample suggests that no sample can be expected to be bias-free.
We report data for $I$ band Surface Brightness Fluctuation (SBF) magnitudes, V-I colors, and distance moduli for 300 galaxies. The Survey contains E, S0 and early-type spiral galaxies in the proportions of 49:42:9, and is essentially complete for E galaxies to Hubble velocities of 2000 km/s, with a substantial sampling of E galaxies out to 4000 km/s. The median error in distance modulus is 0.22 mag. We also present two new results from the Survey. (1) We compare the mean peculiar flow velocity (bulk flow) implied by our distances with predictions of typical cold dark matter transfer functions as a function of scale, and find very good agreement with cold, dark matter cosmologies if the transfer function scale parameter $Gamma$, and the power spectrum normalization $sigma_8$ are related by $sigma_8 Gamma^{-0.5} approx 2pm0.5$. Derived directly from velocities, this result is independent of the distribution of galaxies or models for biasing. The modest bulk flow contradicts reports of large-scale, large-amplitude flows in the $sim200$ Mpc diameter volume surrounding our Survey volume. (2) We present a distance-independent measure of absolute galaxy luminosity, Nbar, and show how it correlates with galaxy properties such as color and velocity dispersion, demonstrating its utility for measuring galaxy distances through large and unknown extinction.