No Arabic abstract
Y dwarfs provide a unique opportunity to study free-floating objects with masses $<$30 M$_{Jup}$ and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step towards characterizing their absolute physical properties. Using Spitzer/IRAC [4.5] images taken over baselines of $sim$2-7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of 6 new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04$-$014351.0, based on Keck/NIRSPEC $J$-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties.
We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from FGS 3, and newer data for 3 Hyads from FGS 1R, both white-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual Fine Guidance Sensor (FGS) fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications and VJHK photometry of the stars comprising the astrometric refer- ence frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determina- tions, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST . With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, < D > = 47.5 pc, for the core a pm 1 - {sigma} dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 pm 0.9 pc. Absolute magnitudes for each member are compared to established main sequences, with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of m-M=3.376 pm 0.01, a value close to the previous Hipparcos values, m-M=3.33pm 0.02.
Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) trigonometric parallax observations were obtained to directly determine distances to five nearby M-dwarf / M-dwarf eclipsing binary systems. These systems are intrinsically interesting as benchmark systems for establishing basic physical parameters for low-mass stars, such as luminosity L, and radius R. HST/FGS distances are also one of the few direct checks on Gaia trigonometric parallaxes, given the comparable sensitivity in both magnitude limit and determination of parallactic angles. A spectral energy distribution (SED) fit of each systems blended flux output was carried out, allowing for estimation of the bolometric flux from the primary and secondary components of each system. From the stellar M, L, and R values, the low-mass star relationships between L and M, and R and M, are compared against idealized expectations for such stars. An examination on the inclusion of these close M-dwarf/M-dwarf pairs in higher-order common proper motion (CPM) pairs is analysed; each of the 5 systems has indications of being part of a CPM system. Unexpected distances on interesting objects found within the grid of parallactic reference stars are also presented, including a nearby M dwarf and a white dwarf.
We present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix), Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi) parallaxes with astrometric data from Fine Guidance Sensors FGS 1R and FGS 3, white-light interferometers on the Hubble Space Telescope (HST). Proper motions, spectral classifications and VJHKT_2M and DDO51 photometry of the stars comprising the astrometric reference frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each PNN. Weighted averaging with previous independent parallax measurements yields an average parallax precision, sigma_{pi}/pi = 5 %. Derived distances are: d_{NGC 6853}=405^{+28}_{-25}pc, d_{NGC 7293}=216^{+14}_{-12} pc, d_{Abell 31} = 621^{+91}_{-70} pc, and d_{DeHt 5} = 345^{+19}_{-17} pc. These PNNi distances are all smaller than previously derived from spectroscopic analyses of the central stars. Derived absolute magnitudes and previously measured effective temperatures permit estimates of PNNi radii, through both the Stefan-Boltzmann relation and Eddington fluxes. Comparing absolute magnitudes with post-AGB models provides mass estimates. Masses cluster around 0.57 M(sun), close to the peak of the white dwarf mass distribution. Adding a few more PNNi with well-determined distances and masses, we compare all the PNNi with cooler white dwarfs of similar mass, and confirm, as expected, that PNNi have larger radii than white dwarfs that have reached their final cooling tracks. (Abridged)
The status of 38 halo white dwarf candidates identified by Oppenheimer et al. (2001) has been intensively discussed by various authors. In analyses undertaken to date, trigonometric parallaxes are crucial missing data. Distance measurements are mandatory to kinematically segregate halo object from disk objects and hence enable a more reliable estimate of the local density of halo dark matter residing in such objects. We present trigonometric parallax measurements for 15 candidate halo white dwarfs (WDs) selected from the Oppenheimer et al. (2001) list. We observed the stars using the ESO 1.56-m Danish Telescope and ESO 2.2-m telescope from August 2001 to July 2004. Parallaxes with accuracies of 1--2 mas were determined yielding relative errors on distances of $sim5$% for 6 objects, $sim12$% for 3 objects, and $sim20$% for two more objects. Four stars appear to be too distant (probably farther than 100 pc) to have measurable parallaxes in our observations. Distances, absolute magnitudes and revised space velocities were derived for the 15 halo WDs from the Oppenheimer et al. (2001) list. Halo membership is confirmed unambiguously for 6 objects while 5 objects may be thick disk members and 4 objects are too distant to draw any conclusion based solely on kinematics. Comparing our trigonometric parallaxes with photometric parallaxes used in previous work reveals an overestimation of distance as derived from photometric techniques. This new data set can be used to revise the halo white dwarf space density, and that analysis will be presented in a subsequent publication.
We report new parallax measurements for ten L and early T type dwarfs, five of which have no previous published values, using observations over 3 years at the robotic Liverpool Telescope. The resulting parallaxes and proper motions have median errors of 2,mas and 1.5,mas/year respectively. Their space motions indicate they are all Galactic disk members. We combined this sample with other objects with astrometry from the Liverpool Telescope and with published literature astrometry to construct a sample of 260 L and early T type dwarfs with measured parallaxes, designated the Astrometry Sample. We study the kinematics of the Astrometry Sample, and derived a solar motion of $(U,V,W)_{bigodot} = (7.9pm1.7,13.2pm1.2,7.2pm1.0)$,kms~ with respect to the local standard of rest, in agreement with recent literature. We derive a kinematic age of 1.5-1.7,Gyr for the Astrometry Sample assuming the age increases monotonically with the total velocity for a given disk sample. This kinematic age is less than half literature values for other low mass dwarf samples. We believe this difference arises for two reasons (1) the sample is mainly composed of mid to late L dwarfs which are expected to be relatively young and (2) the requirement that objects have a measured parallax biases the sample to the brighter examples which tend to be younger.