No Arabic abstract
The absolute fluxes of the cosmic-ray antiprotons at solar minimum are measured in the energy range 0.18 to 1.4 GeV, based on 43 events unambiguously detected in BESS 95 data. The resultant energy spectrum appears to be flat below 1 GeV, compatible with a possible admixture of primary antiproton component with a soft energy spectrum, while the possibility of secondary antiprotons alone explaining the data cannot be excluded with the present accuracy. Further improvement of statistical accuracy and extension of the energy range are planned in future BESS flights.
The GAPS experiment is foreseen to carry out a dark matter search by measuring low-energy cosmic-ray antideuterons and antiprotons with a novel detection approach. It will provide a new avenue to access a wide range of different dark matter models and masses from about 10GeV to 1TeV. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays is very low. Well-motivated theories beyond the Standard Model contain viable dark matter candidates, which could lead to a significant enhancement of the antideuteron flux due to annihilation or decay of dark matter particles. This flux contribution is believed to be especially large at low energies, which leads to a high discovery potential for GAPS. The GAPS low-energy antiproton search will provide some of the most stringent constraints on ~30GeV dark matter, will provide the best limits on primordial black hole evaporation on galactic length scales, and explore new discovery space in cosmic-ray physics. GAPS is designed to achieve its goals via long duration balloon flights at high altitude in Antarctica. The detector itself will consist of 10 planes of Si(Li) solid state detectors and a surrounding time-of-flight system. Antideuterons and antiprotons will be slowed down in the Si(Li) material, replace a shell electron and form an excited exotic atom. The atom will be deexcited by characteristic X-ray transitions and will end its life by the formation of an annihilation pion/proton star. This unique event structure will deliver a nearly background free detection possibility.
The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been investigated by comparing measured and calculated antiproton spectra. BESS-Polar II data show no evidence of primary antiprotons from evaporation of primordial black holes.
The goal of the AE$mathrm{bar{g}}$IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earths gravitational acceleration on antimatter. To achieve this goal, the AE$mathrm{bar{g}}$IS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1$%$ precision on the measurement of $bar{g}$ with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AE$mathrm{bar{g}}$IS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeV
The existence of a significant flux of antiprotons confined to Earths magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of trapped protons at energies above some tens of MeV. This Letter reports the discovery of an antiproton radiation belt around the Earth. The trapped antiproton energy spectrum in the South Atlantic Anomaly (SAA) region has been measured by the PAMELA experiment for the kinetic energy range 60--750 MeV. A measurement of the atmospheric sub-cutoff antiproton spectrum outside the radiation belts is also reported. PAMELA data show that the magnetospheric antiproton flux in the SAA exceeds the cosmic-ray antiproton flux by three orders of magnitude at the present solar minimum, and exceeds the sub-cutoff antiproton flux outside radiation belts by four orders of magnitude, constituting the most abundant source of antiprotons near the Earth.
We report on a new measurement of the cosmic ray (CR) electron and positron spectra in the energy range of 20 MeV -- 1 GeV. The data were taken during the first flight of the balloon-borne spectrometer AESOP-Lite (Anti Electron Sub Orbital Payload), which was flown from Esrange, Sweden, to Ellesmere Island, Canada, in May 2018. The instrument accumulated over 130 hours of exposure at an average altitude of 3 g.cm$^{-2}$ of residual atmosphere. The experiment uses a gas Cherenkov detector and a magnetic spectrometer, consisting of a permanent dipole magnet and silicon strip detectors (SSDs), to identify particle type and measure the rigidity. Electrons and positrons were detected against a background of protons and atmospheric secondary particles. The primary cosmic ray spectra of electrons and positrons, as well as the re-entrant albedo fluxes, were extracted between 20 MeV -- 1 GeV during a positive solar magnetic polarity epoch. The positron fraction below 100 MeV appears flat, suggesting diffusion dominated solar modulation at low rigidity. The all-electron spectrum is presented and compared with models from a heliospheric numerical transport code.