No Arabic abstract
We briefly show results on the redshift and space distribution of field galaxies with different spectral types in the ESO-Sculptor survey (ESS). We also show results on the ESS galaxy luminosity function.
Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution propto (1 + z)^4.89pm1.07 and moderate negative density evolution propto (1 + z)^-1.02pm0.54 over the redshift range z=[0.02, 0.5].
(Abridged) The ESO Slice Project (ESP) is a galaxy redshift survey we have completed as an ESO Key-Project over ~23 square degrees, in a region near the South Galactic Pole. The survey is nearly complete to the limiting magnitude b_J=19.4 and consists of 3342 galaxies with reliable redshift determination. The ESP survey is intermediate between shallow, wide angle samples and very deep, one-dimensional pencil beams: spanning a volume of ~ 5 x 10^4 Mpc^3 at the sensitivity peak (z ~ 0.1), it provides an accurate determination of the local luminosity function and the mean galaxy density. We find that, although a Schechter function is an acceptable representation of the luminosity function over the entire range of magnitudes (M < -12.4), our data suggest the presence of a steepening of the luminosity function for M > -17. The amplitude and the alpha and M^* parameters of our luminosity function are in good agreement with those of the AUTOFIB redshift survey (Ellis et al. 1996). Viceversa, our amplitude is significantly higher, by a factor ~ 1.6 at M ~ M^*, than that found for both the Stromlo-APM (Loveday et al. 1992) and the Las Campanas (Lin et al. 1996) redshift surveys. Also the faint end slope of our luminosity function is significantly steeper than that found in these two surveys. Large over- and under- densities are clearly seen in our data. In particular, we find evidence for a local underdensity (for D < 140 Mpc) and a significant overdensity at z ~ 0.1. When these radial density variations are taken into account, our derived luminosity function reproduces very well the observed counts for b_J < 19.4, including the steeper than Euclidean slope for b_J < 17.
We present results from the Las Campanas Infrared Survey, designed to identify a statistically significant sample of z>=1 galaxies using photometric redshift techniques. Here we summarize the design and strategies of the survey and present the first estimate of the galaxy luminosity function at z>=1 based on H-band selected galaxies identified in our survey. Results of number count studies and luminosity function measurements indicate that most early-type galaxies were already in place by z~1.2 with a modest space density evolution and a mild luminosity evolution over that expected from passive evolution.
The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame M_B versus U-B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bi-modality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M*_B for blue galaxies brightens by ~ 1.3 magnitudes per unit redshift, with no significant evolution in number density. For red galaxies M*_B brightens somewhat less with redshift, while the formal value of phi* declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.
We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5<z<1.1, using the first ~55000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). We measured the redshift-space two-point correlation functions (2PCF), and the projected correlation function, in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes -21.6<MB-5log(h)<-19.5 and median stellar masses 9.8<log(M*[Msun/h^2])<10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2<r_p[Mpc/h]<20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat LCDM model to derive the dark matter 2PCF. We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF -- the correlation length and the slope -- as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5<z<1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z=0.5 and z=1.1 for a broad range of luminosities and stellar masses.