Do you want to publish a course? Click here

The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation

59   0   0.0 ( 0 )
 Added by Stephane Coutu
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of cosmic-ray electrons and positrons have been made with a new balloon-borne detector, HEAT (the High-Energy Antimatter Telescope), first flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach and the data analysis procedures, and we present results from this flight. The measurement has provided a new determination of the individual energy spectra of electrons and positrons from 5 GeV to about 50 GeV, and of the combined all-electron intensity (e+ + e-) up to about 100 GeV. The single power-law spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3 +/- 0.2, respectively. We find that a contribution from primary sources to the positron intensity in this energy region, if it exists, must be quite small.



rate research

Read More

Isotropy is a key assumption in many models of cosmic-ray electrons and positrons. We find that simulation results imply a critical energy of ~10-1000 GeV above which electrons and positrons can spend their entire lives in streams threading magnetic fields, due to energy losses. This would restrict the number of electron/positron sources contributing at Earth, likely leading to smooth electron and positron spectra, as is observed. For positrons, this could be as few as one, with an enhanced flux that would ease energetics concerns of a pulsar origin of the positron excess, or even zero, bringing dark matter into play. We conclude that ideas about electron/positron propagation based on either isotropic diffusion or turbulent fields must be changed.
Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.
Low energy cosmic rays are modulated by the solar activity when they propagation in the heliosphere, leading to ambiguities in understanding their acceleration at sources and propagation in the Milky Way. By means of the precise measurements of the $e^-$, $e^+$, $e^-+e^+$, and $e^+/(e^-+e^+)$ spectra by AMS-02 near the Earth, as well as the very low energy measurements of the $e^-+e^+$ fluxes by Voyager-1 far away from the Sun, we derive the local interstellar spectra (LIS) of $e^-$ and $e^+$ components individually. Our method is based on a non-parametric description of the LIS of $e^-$ and $e^+$ and a force-field solar modulation model. We then obtain the evolution of the solar modulation parameters based on the derived LIS and the monthly fluxes of cosmic ray $e^-$ and $e^+$ measured by AMS-02. {bf To better fit the monthly data, additional renormalization factors for $e^-$ and $e^+$ have been multiplied to the modulated fluxes.} We find that the inferred solar modulation parameters of positrons are in good agreement with that of cosmic ray nuclei, and the time evolutions of the solar modulation parameters of electrons and positrons differ after the reversal of the heliosphere magnetic field polarity, which shows clearly the charge-sign dependent modulation effect.
185 - Roberto Lineros 2009
A very interesting puzzle about the origin of electron and positron cosmic rays is deduced from the latests experimental results. We model the propagation of such cosmic rays in terms of a successfully tested two--zone propagation model. Several theoretical uncertainties -- like ones related to propagation -- are considered to study different types of electron and positron sources: dark matter annihilation, secondary production, and supernova remnants.
High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $sim 5$ TeV by ground-based Cherenkov $gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range $25~{rm GeV}-4.6~{rm TeV}$ by the DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The majority of the spectrum can be properly fitted by a smoothly broken power-law model rather than a single power-law model. The direct detection of a spectral break at $E sim0.9$ TeV confirms the evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at energies above 1 TeV and sheds light on the physical origin of the sub-TeV CREs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا