Do you want to publish a course? Click here

TAROT: A status report

96   0   0.0 ( 0 )
 Added by Michel Boer
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

TAROT-1 is an automatic, autonomous ground based observatory whose primary goal is the rapid detection of the optical counterparts of cosmic gamma-ray burst sources. It will be able to begin imaging any GRB localization 8 seconds after receipt of an alert from CGRO/BATSE or HETE-2. TAROT-1 will reach the 17th V magnitude in 10 seconds, at a 10$sigma$ confidence level. TAROT will be able to observe GRB positions given by Beppo-SAX or RXTE, EUV transients from ALEXIS alerts, etc. TAROT will also study a wide range of secondary objectives and will feature a complete automatic data analysis system, and a powerful scheduling software. TAROT will be installed this fall on the Plateau du Calern, 1200m above sea level. We report on the status of the project.



rate research

Read More

The visitor instrument PIONIER provides VLTI with improved imaging capabilities and sensitivity. The instrument started routinely delivering scientific data in November 2010, that is less than 12 months after being approved by the ESO Science and Technical Committee. We recall the challenges that had to be tackled to design, built and commission PIONIER. We summarize the typical performances and some astrophysical results obtained so far. We conclude this paper by summarizing lessons learned.
The QCDSP machine at Columbia University has grown to 2,048 nodes achieving a peak speed of 100 Gigaflops. Software for quenched and Hybrid Monte Carlo (HMC) evolution schemes has been developed for staggered fermions, with support for Wilson and clover fermions under development. We provide an overview of the runtime environment, the current status of the QCDSP construction program and preliminary results not presented elsewhere in these proceedings.
103 - S. Beurthey , N. Bohmer , P. Brun 2020
In this report we present the status of the MAgnetized Disk and Mirror Axion eXperiment (MADMAX), the first dielectric haloscope for the direct search of dark matter axions in the mass range of 40 to 400 $mu$eV. MADMAX will consist of several parallel dielectric disks, which are placed in a strong magnetic field and with adjustable separations. This setting is expected to allow for an observable emission of axion induced electromagnetic waves at a frequency between 10 and 100 GHz corresponding to the axion mass. The present document orignated from a status report to the DESY PRC in 2019.
We review the status of the integrability and solvability of the geodesics equations of motion on symmetric coset spaces that appear as sigma models of supergravity theories when reduced over respectively the timelike and spacelike direction. Such geodesic curves describe respectively timelike and spacelike brane solutions. We emphasize the applications to black holes.
This report summarizes the present status of neutrino non-standard interactions (NSI). After a brief overview, several aspects of NSIs are discussed, including connection to neutrino mass models, model-building and phenomenology of large NSI with both light and heavy mediators, NSI phenomenology in both short- and long-baseline neutrino oscillation experiments, neutrino cross-sections, complementarity of NSI with other low- and high-energy experiments, fits with neutrino oscillation and scattering data, DUNE sensitivity to NSI, effective field theory of NSI, as well as the relevance of NSI to dark matter and cosmology. We also discuss the open questions and interesting future directions that can be pursued by the community at large. This report is based on talks and discussions during the Neutrino Theory Network NSI workshop held at Washington University in St. Louis from May 29-31, 2019 (https://indico.cern.ch/event/812851/)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا