Do you want to publish a course? Click here

Supersonic Random Flows in the Perseus Molecular Cloud

62   0   0.0 ( 0 )
 Added by Paolo Padoan
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra from a 5 pc model cloud. The synthetic spectra are computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the 3-D magneto-hydrodynamic (MHD) equations in both the highly supersonic and super-Alfvenic regimes of random flows. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. The three-dimensional structure and dynamics of molecular clouds like Perseus are appropriately described by random supersonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single protostars and the effects of star formation in the cloud dynamics, the overall description of the cloud and of the initial conditions for star formation can apparently be described on intermediate scales without accounting for gravity and stellar radiation.



rate research

Read More

We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra, computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the three dimensional magneto-hydrodynamic (MHD) equations. The model cloud is a randomly forced super-Alfvenic and highly super-sonic turbulent isothermal flow. The purpose of the present work is to test if idealized turbulent flows, without self-gravity, stellar radiation, stellar outflows, or any other effect of star formation, are inconsistent or not with statistical properties of star forming molecular clouds. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. Statistical properties of molecular clouds like Perseus are appropriately described by random super-sonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single protostars and the effects of star formation in the cloud dynamics, the overall description of the cloud and of the initial conditions for star formation can apparently be provided on intermediate scales without accounting for gravity, stellar radiation, and a detailed modeling of stellar outflows. We also show that the relation between equivalent line width and integrated antenna temperature indicates the presence of a relatively strong magnetic field in the core B1, in agreement with Zeeman splitting measurements.
154 - M. Tafalla , A. Usero , A. Hacar 2021
$Context.$ The traditional approach to characterize the structure of molecular clouds is to map their line emission. $Aims.$ We aim to test and apply a stratified random sampling technique that can characterize the line emission from molecular clouds more efficiently than mapping. $Methods.$ We sampled the molecular emission from the Perseus cloud using the H2 column density as a proxy. We divided the cloud into ten logarithmically spaced column density bins, and we randomly selected ten positions from each bin. The resulting 100 cloud positions were observed with the IRAM 30m telescope, covering the 3mm-wavelength band and parts of the 2 and 1mm bands. $Results.$ We focus our analysis on 11 molecular species detected toward most column density bins. In all cases, the line intensity is tightly correlated with the H2 column density. For the CO isotopologs, the trend is relatively flat, while for high-dipole moment species such as HCN, CS, and HCO+ the trend is approximately linear. We reproduce this behavior with a cloud model in which the gas density increases with column density, and where most species have abundance profiles characterized by an outer photodissociation edge and an inner freeze-out drop. The intensity behavior of the high-dipole moment species arises from a combination of excitation effects and molecular freeze out, with some modulation from optical depth. This quasi-linear dependence with the H2 column density makes the gas at low column densities dominate the cloud-integrated emission. It also makes the emission from most high-dipole moment species proportional to the cloud mass inside the photodissociation edge. $Conclusions.$ Stratified random sampling is an efficient technique for characterizing the emission from whole molecular clouds. It shows that despite the complex appearance of Perseus, its molecular emission follows a relatively simple pattern.
We apply the Sternberg et al. (2014) theoretical model to analyze HI and H2 observations in the Perseus molecular cloud. We constrain the physical properties of the HI shielding envelopes and the nature of the HI-to-H2 transitions. Our analysis (Bialy et al. 2015) implies that in addition to cold neutral gas (CNM), less dense thermally-unstable gas (UNM) significantly contributes to the shielding of the H2 cores in Perseus.
We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud ($gtrsim$10 pc) to smaller clumps ($sim$1 pc), cores ($sim$0.05-0.1 pc), envelopes ($sim$300-3000 AU) and protostellar objects ($sim$15 AU). We use new observations from the Submillimeter Array (SMA) large project Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions, or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.
We present the results of a large-scale survey of the very dense gas in the Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas found in pre- and protostellar cores, as well as in outflows. We compare the HCO+/HCN data, highlighting regions where there is a marked discrepancy in the spectra of the two emission lines. We use the HCO+ to identify positively protostellar outflows and their driving sources, and present a statistical analysis of the outflow properties that we derive from this tracer. We find that the relations we calculate between the HCO+ outflow driving force and the Menv and Lbol of the driving source are comparable to those obtained from similar outflow analyses using 12CO, indicating that the two molecules give reliable estimates of outflow properties. We also compare the HCO+ and the HCN in the outflows, and find that the HCN traces only the most energetic outflows, the majority of which are driven by young Class 0 sources. We analyse the abundances of HCN and HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is much more enhanced than the HCO+ in the outflow lobes. We suggest that this is indicative of shock-enhancement of HCN along the length of the outflow; this process is not so evident for HCO+, which is largely confined to the outflow base.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا