No Arabic abstract
We apply the Sternberg et al. (2014) theoretical model to analyze HI and H2 observations in the Perseus molecular cloud. We constrain the physical properties of the HI shielding envelopes and the nature of the HI-to-H2 transitions. Our analysis (Bialy et al. 2015) implies that in addition to cold neutral gas (CNM), less dense thermally-unstable gas (UNM) significantly contributes to the shielding of the H2 cores in Perseus.
We derive the CO-to-H2 conversion factor, X_CO = N(H2)/I_CO, across the Perseus molecular cloud on sub-parsec scales by combining the dust-based N(H2) data with the I_CO data from the COMPLETE Survey. We estimate an average X_CO ~ 3 x 10^19 cm^-2 K^-1 km^-1 s and find a factor of ~3 variations in X_CO between the five sub-regions in Perseus. Within the individual regions, X_CO varies by a factor of ~100, suggesting that X_CO strongly depends on local conditions in the interstellar medium. We find that X_CO sharply decreases at Av < 3 mag but gradually increases at Av > 3 mag, with the transition occurring at Av where I_CO becomes optically thick. We compare the N(HI), N(H2), I_CO, and X_CO distributions with two models of the formation of molecular gas, a one-dimensional photodissociation region (PDR) model and a three-dimensional magnetohydrodynamic (MHD) model tracking both the dynamical and chemical evolution of gas. The PDR model based on the steady state and equilibrium chemistry reproduces our data very well but requires a diffuse halo to match the observed N(HI) and I_CO distributions. The MHD model generally matches our data well, suggesting that time-dependent effects on H2 and CO formation are insignificant for an evolved molecular cloud like Perseus. However, we find interesting discrepancies, including a broader range of N(HI), likely underestimated I_CO, and a large scatter of I_CO at small Av. These discrepancies likely result from strong compressions/rarefactions and density fluctuations in the MHD model.
Comparison analyses between the gas emission data (HI 21cm line and CO 2.6 mm line) and the Planck/IRAS dust emission data (optical depth at 353 GHz tau353 and dust temperature Td) allow us to estimate the amount and distribution of the hydrogen gas more accurately, and our previous studies revealed the existence of a large amount of optically-thick HI gas in the solar neighborhood. Referring to this, we discuss the neutral hydrogen gas around the Perseus cloud in the present paper. By using the J-band extinction data, we found that tau353 increases as a function of the 1.3-th power of column number density of the total hydrogen (NH), and this implies dust evolution in high density regions. This calibrated tau353-NH relationship shows that the amount of the HI gas can be underestimated to be ~60% if the optically-thin HI method is used. Based on this relationship, we calculated optical depth of the 21 cm line (tauHI), and found that <tauHI> ~ 0.92 around the molecular cloud. The effect of tauHI is still significant even if we take into account the dust evolution. We also estimated a spatial distribution of the CO-to-H2 conversion factor (XCO), and we found its average value is <XCO> ~ 1.0x10^20 cm-2 K-1 km-1 s. Although these results are inconsistent with some previous studies, these discrepancies can be well explained by the difference of the data and analyses methods.
We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud ($gtrsim$10 pc) to smaller clumps ($sim$1 pc), cores ($sim$0.05-0.1 pc), envelopes ($sim$300-3000 AU) and protostellar objects ($sim$15 AU). We use new observations from the Submillimeter Array (SMA) large project Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions, or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.
We study the effect of density fluctuations induced by turbulence on the HI/H$_2$ structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas, and chemical HI/H$_2$ balance calculations. We derive atomic-to-molecular density profiles and the HI column density probability density function (PDF) assuming chemical equilibrium. We find that while the HI/H$_2$ density profiles are strongly perturbed in turbulent gas, the mean HI column density is well approximated by the uniform-density analytic formula of Sternberg et al. (2014). The PDF width depends on (a) the radiation intensity to mean density ratio, (b) the sonic Mach number and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the HI PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of HI in the Perseus molecular cloud. We show that a narrow observed HI PDF may imply small scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]