Do you want to publish a course? Click here

The Tully-Fisher relation: evolution with redshift and environment

100   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Tully-Fisher Relation (TFR) links two fundamental properties of disk galaxies: their luminosity and their rotation velocity (mass). The pioneering work of Vogt et al. in the 1990s showed that it is possible to study the TFR for spiral galaxies at considerable look-back-times, and use it as a powerful probe of their evolution. In recent years, several groups have studied the TFR for galaxies in different environments reaching redshifts beyond one. In this brief review I summarise the main results of some of these studies and their consequences for our understanding of the formation and evolution of disk galaxies. Particular emphasis is placed on the possible environment-driven differences in the behaviour of the TFR for field and cluster galaxies.



rate research

Read More

We present predictions on the evolution of the Tully-Fisher (TF) relation with redshift, based on cosmological N-body/hydrodynamical simulations of disc galaxy formation and evolution. The simulations invoke star formation and stellar feedback, chemical evolution with non-instantaneous recycling, metallicity dependent radiative cooling and effects of a meta-galactic UV field, including simplified radiative transfer. At z=0, the simulated and empirical TF relations are offset by about 0.4 magnitudes (1 sigma) in the B and I bands. The origin of these offsets is somewhat unclear, but it may not necessarily be a problem of the simulations only. As to evolution, we find a brightening of the TF relation between z=0 and z=1 of about 0.85 mag in rest-frame B band, with a non-evolving slope. The brightening we predict is intermediate between the (still quite discrepant) observational estimates. This evolution is primarily a luminosity effect, while the stellar mass TF relation shows negligible evolution. The individual galaxies do gain stellar mass between z=1 and z=0, by a 50-100%; but they also correspondingly increase their characteristic circular speed. As a consequence, individually they mainly evolve ALONG the stellar mass TF relation, while the relation as such does not show any significant evolution.
We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescription for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
The redshift evolution of the Tully-Fisher Relation probes gravitational dynamics that must be consistent with any modified gravity theory seeking to explain the galactic rotation curves without the need for dark matter. Within the context of non-relativistic Modified Newtonian Dynamics (MOND), the characteristic acceleration scale of the theory appears to be related to the current value of either the Hubble constant, i.e., alpha ~ cH_0, or the dark energy density, i.e., alpha (8 pi G rho_lambda/3)^{1/2}. If these relations are the manifestation of a fundamental coupling of a_0 to either of the two cosmological parameters, the cosmological evolution would then dictate a particular dependence of the MOND acceleration scale with redshift that can be tested with Tully-Fisher relations of high-redshift galaxies. We compare this prediction to two sets of Tully-Fisher data with redshifts up to z=1.2. We find that both couplings are excluded within the formal uncertainties. However, when we take into account the potential systematic uncertainties in the data, we find that they marginally favor the coupling of the MOND acceleration scale to the density of dark energy.
84 - R. Giovanelli 1996
The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinematical zero-point, obtained from a sample of 24 clusters of galaxies extending to cz ~ 9,000 km/s, and the most recent set of Cepheid distances for galaxies fit for TF use. The combination of these two ingredients yields H_not = 69+/-5 km/(s Mpc). The approach is significantly more accurate than the more common application with single cluster (e.g. Virgo, Coma) samples.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC2000) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovichs thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovichs thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا