Do you want to publish a course? Click here

Lensing of unresolved stars towards the Galactic Bulge

68   0   0.0 ( 0 )
 Added by Christophe Alard
 Publication date 1996
  fields Physics
and research's language is English
 Authors C. Alard




Ask ChatGPT about the research

Previous calculations of the rates and optical depths due to microlensing only considered resolved stars. However, if a faint unresolved star lens is close enough to a resolved star, the event will be seen by the microlensing experiments and attributed to the bighter star. The blending biases the duration, making the contribution of the unresolved stars very significant for short events. This contribution is confused with lensing by brown dwarfs. The exact rates of these blended events are extremly sensitive to the limiting magnitude achieved in the microlensing search. Appropriate calculations of the optical depth and rates are provided here, and illustrated in the case of the DUO and OGLE experiments. The additional contribution of unresolved stars is very significant and probably explains the high optical depth and rates observed towards the Galactic Bulge. The blended unresolved event can be identified using either the color shift or the light curve shape. However, neither of these two methods is apropriate to identify a large number of blended events towards the Bulge. In some cases of good photometry and small impact parameter, an identification is possible, as for the OGLE 5 event, which clearly appears as a case of lensing of an unresolved star. The recent results obtained by the PLANET collaboration indicate that a high resolution and dense sampling of the light curve is possible, and will probably provide a very interesting possibility to correct the blending bias, as demonstrated for OGLE 5. This possibility, is certainly better than a statistical estimation of the lensing rates, which are always prone to some uncertainty. But, at this time, the contribution of unresolved stars must be included in the analyses of microlensing experiments.



rate research

Read More

We have performed a frequency analysis of 10,092 Delta Scuti-type stars detected in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge, which is the most numerous homogeneous sample of Delta Scuti stars observed so far. The main goal was to search for stars pulsating in at least two radial modes simultaneously. We have found 3083 candidates for such stars, which is the largest set obtained to date. Among them, 2655 stars pulsate in two radial modes, 414 stars pulsate in three radial modes, and 14 stars pulsate in four radial modes at the same time. We report the identification of 221 Delta Scuti stars pulsating in the fundamental mode, first overtone, and third overtone simultaneously. We show the most populated Petersen and Bailey diagrams and discuss statistical properties of the identified frequencies based on this numerous sample. Additionally, we present theoretical predictions of period ratios for Delta Scuti stars pulsating in overtones from the fourth to the seventh.
60 - P. Boumis 2006
New Planetary Nebulae (PNe) were discovered through an [O III] 5007 A emission line survey in the Galactic bulge region with l>0 deg. We detected 240 objects, including 44 new PNe. Deep Halpha+[N II] CCD images as well as low resolution spectra were obtained for the new PNe in order to study them in detail. Preliminary photo-ionization models of the new PNe with Cloudy resulted in first estimates of the physical parameters and abundances. They are compared to the abundances of Galactic PNe.
If not properly accounted for, unresolved binary stars can induce a bias in the photometric determination of star cluster masses inferred from star counts and the luminosity function. A correction factor close to 1.15 (for a binary fraction of 0.35) was found in citep{Boro19}, which needs to be applied to blind photometric mass estimates. This value for the correction factor was found to be smaller than literature values. In an attempt to lift this discrepancy, in this work the focus is on higher order multiple stars with the goal of investigating the effect of triple and quadruple systems adopting the same methodology and data-set as in the quoted work. Then the result is found that when triple and quadruple together with binary systems are properly accounted for, the actual cluster mass (computed as all stars were single) should be incremented by a factor of 1.18$-$1.27, depending on the cluster and when the binary fraction $alpha$ is 0.35. Fitting formulae are provided to derive the increment factor for different binary star percentages.
70 - M. C. Smith 2005
Perhaps as many as 30 parallax microlensing events are known, thanks to the efforts of the MACHO, OGLE, EROS and MOA experiments monitoring the bulge. Using Galactic models, we construct mock catalogues of microlensing light curves towards the bulge, allowing for the uneven sampling and observational error bars of the OGLE-II experiment. The fraction of parallax events with delta chi^2 > 50 in the OGLE-II database is around ~1%, though higher fractions are reported by some other surveys. This is in accord with expectations from standard Galactic models. The fraction of parallax events depends strongly on the Einstein crossing time (t_E), being less than 5% at t_E = 50 days but rising to 50% at t_E > 1 yr. We find that the existence of parallax signatures is essentially controlled by the acceleration of the observer normalised to the projected Einstein radius on the observer plane divided by t_E^2. The properties of the parallax events - time-scales, projected velocities, source and lens locations - in our mock catalogues are analysed. Typically, ~38% of parallax events are caused by a disk star microlensing a bulge source, while ~33% are caused by a disk star microlensing a disk source (of these disk sources, one sixth are at a distance of 5 kpc or less). There is a significant shift in mean time-scale from 32 d for all events to ~130d for our parallax events. There are corresponding shifts for other parameters, such as the lens-source velocity projected onto the observer plane (~1110 km/s for all events versus ~80 km/s for parallax events) and the lens distance (6.7 kpc versus 3.7 kpc). We also assess the performance of parallax mass estimators and investigate whether our mock catalogue can reproduce events with features similar to a number of conjectured `black hole lens candidates.
67 - R. Ansari 2004
We present the AGAPE astrometric and photometric catalogue of 1579 variable stars in a 14x10 field centred on M31. This work is the first survey devoted to variable stars in the bulge of M31. The R magnitudes of the objects and the B-R colours suggest that our sample is dominated by red long-period variable stars (LPV), with a possible overlap with Cepheid-like type II stars. Twelve nova candidates are identified. Correlations with other catalogues suggest that 2 novae could be recurrent novae and provide possible optical counterparts for 2 supersoft X-ray sources candidates observed with Chandra.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا