Do you want to publish a course? Click here

Variable stars towards the bulge of M31: the AGAPE catalogue

68   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English
 Authors R. Ansari




Ask ChatGPT about the research

We present the AGAPE astrometric and photometric catalogue of 1579 variable stars in a 14x10 field centred on M31. This work is the first survey devoted to variable stars in the bulge of M31. The R magnitudes of the objects and the B-R colours suggest that our sample is dominated by red long-period variable stars (LPV), with a possible overlap with Cepheid-like type II stars. Twelve nova candidates are identified. Correlations with other catalogues suggest that 2 novae could be recurrent novae and provide possible optical counterparts for 2 supersoft X-ray sources candidates observed with Chandra.



rate research

Read More

111 - Jin H. An 2004
The POINT-AGAPE collaboration has been monitoring M31 for three seasons with the Wide Field Camera on the Isaac Newton Telescope. In each season, data are taken for one hour per night for roughly sixty nights during the six months that M31 is visible. The two fields of view straddle the central bulge, northwards and southwards. We have calculated the locations, periods and amplitudes of 35414 variable stars in M31 as a by-product of our microlensing search. The variables are classified according to their period and amplitude of variation. They are classified into population I and II Cepheids, Miras and semi-regular long-period variables. The population I Cepheids are associated with the spiral arms, while the central concentration of the Miras and long-period variables varies noticeably, the stars with brighter (and shorter) variations being much more centrally concentrated. A crucial role in the microlensing experiment is played by the asymmetry signal. It was initially assumed that the variable stars would not be a serious problem as their distributions would be symmetric. We demonstrate that this assumption is not correct. We find that differential extinction associated with the dust lanes causes the variable star distributions to be asymmetric. The size and direction of the asymmetry of the variable stars is measured as a function of period and amplitude of variation. The implications of this discovery for the successful completion of the microlensing experiments towards M31 are discussed. (Abridged)
88 - M. J. Darnley 2004
The POINT-AGAPE survey is an optical search for gravitational microlensing events towards the Andromeda Galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disk. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range of speed class, from very fast to very slow. Among the light-curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag day$^{-1}$ over a 150 day period. We detect other interesting variable objects, including one of the longest period and most luminous Mira variables. The CN catalogue constitutes a uniquely well-sampled and objectively-selected data set with which to study the statistical properties of classical novae in M31, such as the global nova rate, the reliability of novae as standard-candle distance indicators and the dependence of the nova population on stellar environment. The findings of this statistical study will be reported in a follow-up paper.
66 - V. Belokurov 2004
An automated search is carried out for microlensing events using a catalogue of 44554 variable superpixel lightcurves derived from our three-year monitoring program of M31. Each step of our candidate selection is objective and reproducible by a computer. Our search is unrestricted, in the sense that it has no explicit timescale cut. So, it must overcome the awkward problem of distinguishing long-timescale microlensing events from long-period stellar variables. The basis of the selection algorithm is the fitting of the superpixel lightcurves to two different theoretical models, using variable star and blended microlensing templates. Only if microlensing is preferred is an event retained as a possible candidate. Further cuts are made with regard to (i) sampling, (ii) goodness of fit of the peak to a Paczynski curve, (iii) consistency of the microlensing hypothesis with the absence of a resolved source, (iv) achromaticity, (v) position in the colour-magnitude diagram and (vi) signal-to-noise ratio. Our results are reported in terms of first-level candidates, which are the most trustworthy, and second-level candidates, which are possible microlensing but have lower signal-to-noise and are more questionable. The pipeline leaves just 3 first-level candidates, all of which have very short full-width half-maximum timescale (<5 days) and 3 second-level candidates, which have timescales of 31, 36 and 51 days respectively. We also show 16 third-level lightcurves, as an illustration of the events that just fail the threshold for designation as microlensing candidates. They are almost certainly mainly variable stars. Two of the 3 first-level candidates correspond to known events (PA 00-S3 and PA 00-S4) already reported by the POINT-AGAPE project. The remaining first-level candidate is new.
53 - N. Delmotte 2002
The Master Catalogue of stars towards the Magellanic Clouds (MC2) is a multi-wavelength reference catalogue. The current paper presents the first results of the MC2 project. We started with a massive cross-identification of the two recently released near-infrared surveys: the DENIS Catalogue towards the Magellanic Clouds (DCMC) with more than 1.3 million sources identified in at least two of the three DENIS filters (I J Ks) and the 2nd Incremental Release of the 2MASS point source catalogue (J H Ks) covering the same region of the sky. Both point source catalogues provide an unprecedented wealth of data on the stellar populations of the Magellanic Clouds (MCs). The cross-matching procedure has been extended to optical wavelength ranges, including the UCAC1 (USNO) and GSC2.2 catalogues. New cross-matching procedures for very large catalogues have been developed and important results on the astrometric and photometric accuracy of the cross-identified catalogues were derived. The cross-matching of large surveys is an essential tool to improve our understanding of their specific contents. This study has been partly supported by the ASTROVIRTEL project that aims at improving access to astronomical archives as virtual telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا