No Arabic abstract
We discuss the optical spectrum of a multiply-imaged arc resolved by HST in the $z$=0.175 cluster A2218. The spectrum, obtained with LDSS-2 on the 4.2m William Herschel telescope, reveals the source to be a galaxy at a redshift $z$=2.515 in excellent agreement with the value predicted by Kneib et al. (1996) on the basis of their inversion of a highly-constrained mass model for the lensing cluster. The source is extremely blue in its optical-infrared colours, consistent with active star formation, and the spectrum reveals absorption lines characteristic of a young stellar population. Of particular significance is the absence of Lyman-$alpha$ emission but the presence of a broad Lyman-$alpha$ absorption. The spectrum is similar to that of other, much fainter, galaxies found at high redshift by various techniques and illustrates the important role that lensing can play in detailed studies of the properties of distant galaxies.
The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z=0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R-K color and strong, narrow emission lines. Analysis of HST WFPC2 imaging and Keck optical and infrared spectroscopy shows that the arc is an hii galaxy magnified by a factor of ~10 by a complex cluster environment. The high intrinsic luminosity, the emission line spectrum, the absorption components seen in Lyalpha and C IV, and the restframe ultraviolet continuum are all consistent with a simple HII region model containing ~ 10^6 hot O stars. The best fit parameters for this model imply a very hot ionizing continuum (T_BB ~ 80,000 K), high ionization parameter (log U ~ -1), and low nebular metallicity (Z / Z_odot ~ 0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair instability supernovae, requiring stars more massive than ~140 M_odot.
Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sample comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX). We detect all sources with known redshifts in either CO J=1-0 or J=2-1. Twelve sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11)x10^{10} M_sun and gas depletion timescales <200 Myr, using a CO to gas mass conversion factor alpha_CO=0.8 M_sun (K km/s pc^2)^{-1}. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive alpha_CO factors in the range 0.4-1.8, similar to what is found in other starbursting systems. We find small scatter in alpha_CO values within the sample, even though inherent variations in the spatial distribution of dust and gas in individual cases could bias the dust-based alpha_CO estimates. We find that lensing magnification factors based on the CO linewidth to luminosity relation (mu_CO) are highly unreliable, but particularly when mu<5. Finally, comparison of the gas and dynamical masses suggest that the average molecular gas fraction stays relatively constant at z=2-5 in the SPT DSFG sample.
We present the rest-frame optical spectrum of a strongly lensed galaxy at redshift z =1.7 behind the cluster Abell 1689. We detect the temperature sensitive auroral line [O III] 4363, which allows the first direct metallicity measurement for galaxies at z > 1. Our high signal-to-noise spectrum indicates that the target is an extremely low metallicity star-forming galaxy.We estimate an intrinsic absolute B band magnitude of M_{B}=-18.3 pm 0.1$, with a stellar mass of 4.4$pm1.2times10^{8}$ M$_{odot}$. This galaxy extends the luminosity-metallicity relation of star-forming galaxies at z > 2 by more than an order of magnitude. Given the double-nuclei like morphology and velocity profile of ha, we tentatively suggest that it could be a merger or a proto-rotating disk galaxy.
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_{2}O$(202 $-$ 111) ($ u_{rest}$ = 987.927 GHz) is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGN) over many orders-of-magnitude in FIR luminosity (L$_{rm FIR}$). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially ($sim$0.5 arcsec corresponding to $sim$1 kiloparsec) and spectrally resolved ($sim$100 kms$^{-1}$) observations of p$-$$rm H_{2}O$(202 $-$ 111) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). In addition to increasing the sample of luminous ($ > $ $10^{12}$L$_{odot}$) galaxies observed with $rm H_{2}O$, this paper examines the L$_{rm H_{2}O}$/L$_{rm FIR}$ relation on resolved scales for the first time at high-redshift. We find that L$_{rm H_{2}O}$ is correlated with L$_{rm FIR}$ on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average L$_{rm H_{2}O}$/L$_{rm FIR}$ =$2.76^{+2.15}_{-1.21}times10^{-5}$. We find that the scatter in the observed L$_{rm H_{2}O}$/L$_{rm FIR}$ relation does not obviously correlate with the effective temperature of the dust spectral energy distribution (SED) or the molecular gas surface density. This is a first step in developing p$-$$rm H_{2}O$(202 $-$ 111) as a resolved star formation rate (SFR) calibrator.
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.