Do you want to publish a course? Click here

Non-axisymmetric wind-accretion simulations I. Velocity gradients of 3% and 20% over one accretion radius

50   0   0.0 ( 0 )
 Added by Maximilian Ruffert
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the hydrodynamics of a variant of classical Bondi-Hoyle-Lyttleton accretion: a totally absorbing sphere moves at various Mach numbers (3 and 10) relative to a medium, which is taken to be an ideal gas having a velocity gradient (of 3% or 20% over one accretion radius) perpendicular to the relative motion. We examine the influence of the Mach number of the flow and the strength of the gradient upon the physical behaviour of the flow and the accretion rates of the angular momentum in particular. The hydrodynamics is modeled by the ``Piecewise Parabolic Method (PPM). The resolution in the vicinity of the accretor is increased by multiply nesting several grids around the sphere. Similarly to the 3D models without gradients published previously, models exhibit non-stationary flow patterns, although the Mach cone remains fairly stable. The accretion rates of mass, linear and angular momenta do not fluctuate as strongly as published previously for 2D models, but similarly to the 2D models, transient disks form around the accretor that alternate their direction of rotation with time. The average specific angular momentum accreted is roughly between 7% and 70% of the total angular momentum available in the accretion cylinder and is always smaller than the value of a vortex with Kepler velocity around the surface of the accretor. The fluctuations of the mass accretion rate in the models with small gradients (2%) are similar to the values of the models without gradients, while the models with large gradients (20%) exhibit larger fluctuations. The mass accretion rate is maximal when the specific angular momentum is zero, while the specific entropy tends to be smaller when the disks are prograde.



rate research

Read More

119 - M. Ruffert 1999
The hydrodynamics of a variant of classical Bondi-Hoyle-Lyttleton accretion is investigated: a totally absorbing sphere moves at various Mach numbers (3 and 10) relative to a medium, which is taken to be an ideal gas having a density gradient (of 3%, 20% or 100% over one accretion radius) perpendicular to the relative motion. Similarly to the 3D models published previously, both with velocity gradients and without, the models with a density gradient presented here exhibit non-stationary flow patterns, although the Mach cone remains fairly stable. The accretion rates of mass, linear and angular momenta do not fluctuate as strongly as published previously for 2D models. No obvious trend of the dependency of mass accretion rate fluctuations on the density gradient can be discerned. The average specific angular momentum accreted is roughly between zero and 70% of the total angular momentum available in the accretion cylinder in the cases where the average is prograde. Due to the large fluctuations during accretion, the average angular momentum of some models is retrograde by up to 25%. Small gradients hardly influence the average accretion rates as compared to accretion from a homogeneous medium, while very large ones succeed to dominate and form an accretion flow in which the sense of rotation is not inverted.
(Abridged.) The accretion-induced collapse (AIC) of a white dwarf (WD) may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in Type Ia supernovae. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a Type III signal in the literature. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. In rapidly differentially rotating models, the disk mass can be as large as ~0.8-Msun. Slowly and/or uniformly rotating models produce much smaller disks. Finally, we find that the postbounce cores of rapidly spinning white dwarfs can reach sufficiently rapid rotation to develop a nonaxisymmetric rotational instability.
A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4times10^{36}$ erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.
The non-axisymmetric structure of accretion disks around the neutron star in Be/X-ray binaries is studied by analyzing the results from three dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations. It is found that ram pressure due to the phase-dependent mass transfer from the Be-star disk excites a one-armed, trailing spiral structure in the accretion disk around the neutron star. The spiral wave has a transient nature; it is excited around the periastron, when the material is transferred from the Be disk, and is gradually damped afterwards. It is also found that the orbital phase-dependence of the mass-accretion rate is mainly caused by the inward propagation of the spiral wave excited in the accretion disk.
A review of wind accretion in HMXB is presented. We focus on different regimes of quasi-spherical accretion onto a NS: supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when the plasma remains hot until it meets the magnetospheric boundary. The two regimes are separated by a limit in X-ray luminosity at about 4 10^{36} erg/s. In subsonic accretion, which works a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere due to the Rayleigh-Taylor instability. Two regimes of subsonic accretion are possible, depending on the plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity regime with Compton cooling to the low-luminosity (L_x < 3times 10^35 erg/s) regime with radiative cooling can be responsible for the onset of the off states repeatedly observed in several X-ray pulsars, such as Vela X-1, GX 301-2 and 4U 1907+09. The triggering of the transition may be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (10^{38}-10^{40} ergs) observed in SFXT may be produced by sporadic capture of magnetized stellar-wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا