No Arabic abstract
A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4times10^{36}$ erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.
A review of wind accretion in HMXB is presented. We focus on different regimes of quasi-spherical accretion onto a NS: supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when the plasma remains hot until it meets the magnetospheric boundary. The two regimes are separated by a limit in X-ray luminosity at about 4 10^{36} erg/s. In subsonic accretion, which works a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere due to the Rayleigh-Taylor instability. Two regimes of subsonic accretion are possible, depending on the plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity regime with Compton cooling to the low-luminosity (L_x < 3times 10^35 erg/s) regime with radiative cooling can be responsible for the onset of the off states repeatedly observed in several X-ray pulsars, such as Vela X-1, GX 301-2 and 4U 1907+09. The triggering of the transition may be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (10^{38}-10^{40} ergs) observed in SFXT may be produced by sporadic capture of magnetized stellar-wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell.
Context: Cygnus X-1 is a black hole X-ray binary system in which the black hole captures and accretes gas from the strong stellar wind emitted by its supergiant O9.7 companion star. The irradiation of the supergiant star essentially determines the flow properties of the stellar wind and the X-ray luminosity from the system. The results of three-dimensional hydrodynamical simulations of wind-fed X-ray binary systems reported in recent work reveal that the ionizing feedback of the X-ray irradiation leads to the existence of two stable states with either a soft or a hard spectrum. Aims: We discuss the observed radiation of Cygnus X-1 in the soft and hard state in the context of mass flow in the corona and disk, as predicted by the recent application of a condensation model. Methods: The rates of gas condensation from the corona to the disk for Cygnus X-1 are determined, and the spectra of the hard and soft radiation are computed. The theoretical results are compared with the MAXI observations of Cygnus X-1 from 2009 to 2018. In particular, we evaluate the hardness-intensity diagrams (HIDs) for its ten episodes of soft and hard states which show that Cygnus X-1 is distinct in its spectral changes as compared to those found in the HIDs of low-mass X-ray binaries. Results: The theoretically derived values of photon counts and hardness are in approximate agreement with the observed data in the HID. However, the scatter in the diagram is not reproduced. Improved agreement could result from variations in the viscosity associated with clumping in the stellar wind and corresponding changes of the magnetic fields in the disk. The observed dipping events in the hard state may also contribute to the scatter and to a harder spectrum than predicted by the model.
Dwarf novae (DNe) and X-ray binaries exhibit outbursts thought to be due to a thermal-viscous instability in the accretion disk. The disk instability model (DIM) assumes that accretion is driven by turbulent transport, customarily attributed to the magneto-rotational instability (MRI). Recent results point out that MRI turbulence alone fails to reproduce the light curves of DNe. We aim to study the impact of wind-driven accretion on the light curves of DNe. Local and global simulations show that magneto-hydrodynamic winds are present when a magnetic field threads the disk, even for relatively high ratios of thermal pressure to magnetic pressure ($beta approx 10^{5}$). These winds are very efficient in removing angular momentum but do not heat the disk; they do not behave as MRI-driven turbulence. We add wind-driven transport in the angular momentum equation of the DIM, assuming a fixed magnetic configuration: dipolar or constant with radius. We use prescriptions for the wind torque and the turbulent torque derived from shearing box simulations. The wind torque enhances the accretion of matter, resulting in light curves that look like DNe outbursts when assuming a dipolar field with a moment $muapprox10^{30},mathrm{G,cm^{3}}$. In the region where the wind dominates, the disk is cold, optically thin and the accretion speed is sonic. This acts as if the inner disk was truncated, leading to higher quiescent X-ray luminosities from the white dwarf boundary layer than expected with the standard DIM. The disk is stabilized if the wind-dominated region is large enough, potentially leading to `dark disks emitting little radiation. Wind-driven accretion can play a key role in shaping the light curves of DNe and X-ray binaries. Future studies will need to include the time evolution of the magnetic field threading the disk to fully assess its impact on the dynamics of the accretion flow.
The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from sim 40 to 120, and their birthrate is sim 5times 10^{-5}-10^{-4} per year. According to our model, among known SyXBs, Sct X-1 and IRXS J180431.1-273932 are wind-fed accretors. GX 1+4 lies in the transition from the wind-fed SyXBs to SyXBs in which the giants overflow their Roche lobe. The model successfully reproduces very long NS spins (such as in IGR J16358-4724 and 4U 1954+31) without the need to invoke very strong magnetic fields.
Hercules X-1 is one of the best studied highly magnetised neutron star X-ray binaries with a wealth of archival data. We present the discovery of an ionised wind in its X-ray spectrum when the source is in the high state. The wind detection is statistically significant in most of the XMM-Newton observations, with velocities ranging from 200 to 1000 km/s. Observed features in the iron K band can be explained by both wind absorption or by a forest of iron emission lines. However, we also detect nitrogen, oxygen and neon absorption lines at the same systematic velocity in the high-resolution RGS grating spectra. The wind must be launched from the accretion disc, and could be the progenitor of the UV absorption features observed at comparable velocities, but the latter likely originate at significantly larger distances from the compact object. We find strong correlations between the ionisation level of the outflowing material and the ionising luminosity as well as the super-orbital phase. If the luminosity is driving the correlation, the wind could be launched by a combination of Compton heating and radiation pressure. If instead the super-orbital phase is the driver for the variations, the observations are likely scanning the wind at different heights above the warped accretion disc. If this is the case, we can estimate the wind mass outflow rate, corrected for the limited launching solid angle, to be roughly 70% of the mass accretion rate.